FreshRSS

🔒
❌ About FreshRSS
There are new available articles, click to refresh the page.
Before yesterdayYour RSS feeds

Leak Reveals the Unusual Path of ‘Urgent’ Russian Threat Warning

By Dell Cameron
The US Congress was preparing to vote on a key foreign surveillance program last week. Then a wild Russian threat appeared.

Riding the AI Waves: The Rise of Artificial Intelligence to Combat Cyber Threats

By The Hacker News
In nearly every segment of our lives, AI (artificial intelligence) now makes a significant impact: It can deliver better healthcare diagnoses and treatments; detect and reduce the risk of financial fraud; improve inventory management; and serve up the right recommendation for a streaming movie on Friday night. However, one can also make a strong case that some of AI’s most significant impacts

Getting off the Attack Surface Hamster Wheel: Identity Can Help

By The Hacker News
IT professionals have developed a sophisticated understanding of the enterprise attack surface – what it is, how to quantify it and how to manage it.  The process is simple: begin by thoroughly assessing the attack surface, encompassing the entire IT environment. Identify all potential entry and exit points where unauthorized access could occur. Strengthen these vulnerable points using

New NKAbuse Malware Exploits NKN Blockchain Tech for DDoS Attacks

By Newsroom
A novel multi-platform threat called NKAbuse has been discovered using a decentralized, peer-to-peer network connectivity protocol known as NKN (short for New Kind of Network) as a communications channel. "The malware utilizes NKN technology for data exchange between peers, functioning as a potent implant, and equipped with both flooder and backdoor capabilities," Russian

Who and What is Behind the Malware Proxy Service SocksEscort?

By BrianKrebs

Researchers this month uncovered a two-year-old Linux-based remote access trojan dubbed AVrecon that enslaves Internet routers into botnet that bilks online advertisers and performs password-spraying attacks. Now new findings reveal that AVrecon is the malware engine behind a 12-year-old service called SocksEscort, which rents hacked residential and small business devices to cybercriminals looking to hide their true location online.

Image: Lumen’s Black Lotus Labs.

In a report released July 12, researchers at Lumen’s Black Lotus Labs called the AVrecon botnet “one of the largest botnets targeting small-office/home-office (SOHO) routers seen in recent history,” and a crime machine that has largely evaded public attention since first being spotted in mid-2021.

“The malware has been used to create residential proxy services to shroud malicious activity such as password spraying, web-traffic proxying and ad fraud,” the Lumen researchers wrote.

Malware-based anonymity networks are a major source of unwanted and malicious web traffic directed at online retailers, Internet service providers (ISPs), social networks, email providers and financial institutions. And a great many of these “proxy” networks are marketed primarily to cybercriminals seeking to anonymize their traffic by routing it through an infected PC, router or mobile device.

Proxy services can be used in a legitimate manner for several business purposes — such as price comparisons or sales intelligence — but they are massively abused for hiding cybercrime activity because they make it difficult to trace malicious traffic to its original source. Proxy services also let users appear to be getting online from nearly anywhere in the world, which is useful if you’re a cybercriminal who is trying to impersonate someone from a specific place.

Spur.us, a startup that tracks proxy services, told KrebsOnSecurity that the Internet addresses Lumen tagged as the AVrecon botnet’s “Command and Control” (C2) servers all tie back to a long-running proxy service called SocksEscort.

SocksEscort[.]com, is what’s known as a “SOCKS Proxy” service. The SOCKS (or SOCKS5) protocol allows Internet users to channel their Web traffic through a proxy server, which then passes the information on to the intended destination. From a website’s perspective, the traffic of the proxy network customer appears to originate from a rented/malware-infected PC tied to a residential ISP customer, not from the proxy service customer.

The SocksEscort home page says its services are perfect for people involved in automated online activity that often results in IP addresses getting blocked or banned, such as Craigslist and dating scams, search engine results manipulation, and online surveys.

Spur tracks SocksEscort as a malware-based proxy offering, which means the machines doing the proxying of traffic for SocksEscort customers have been infected with malicious software that turns them into a traffic relay. Usually, these users have no idea their systems are compromised.

Spur says the SocksEscort proxy service requires customers to install a Windows based application in order to access a pool of more than 10,000 hacked devices worldwide.

“We created a fingerprint to identify the call-back infrastructure for SocksEscort proxies,” Spur co-founder Riley Kilmer said. “Looking at network telemetry, we were able to confirm that we saw victims talking back to it on various ports.”

According to Kilmer, AVrecon is the malware that gives SocksEscort its proxies.

“When Lumen released their report and IOCs [indicators of compromise], we queried our system for which proxy service call-back infrastructure overlapped with their IOCs,” Kilmer continued. “The second stage C2s they identified were the same as the IPs we labeled for SocksEscort.”

Lumen’s research team said the purpose of AVrecon appears to be stealing bandwidth – without impacting end-users – in order to create a residential proxy service to help launder malicious activity and avoid attracting the same level of attention from Tor-hidden services or commercially available VPN services.

“This class of cybercrime activity threat may evade detection because it is less likely than a crypto-miner to be noticed by the owner, and it is unlikely to warrant the volume of abuse complaints that internet-wide brute-forcing and DDoS-based botnets typically draw,” Lumen’s Black Lotus researchers wrote.

Preserving bandwidth for both customers and victims was a primary concern for SocksEscort in July 2022, when 911S5 — at the time the world’s largest known malware proxy network — got hacked and imploded just days after being exposed in a story here. Kilmer said after 911’s demise, SocksEscort closed its registration for several months to prevent an influx of new users from swamping the service.

Danny Adamitis, principal information security researcher at Lumen and co-author of the report on AVrecon, confirmed Kilmer’s findings, saying the C2 data matched up with what Spur was seeing for SocksEscort dating back to September 2022.

Adamitis said that on July 13 — the day after Lumen published research on AVrecon and started blocking any traffic to the malware’s control servers — the people responsible for maintaining the botnet reacted quickly to transition infected systems over to a new command and control infrastructure.

“They were clearly reacting and trying to maintain control over components of the botnet,” Adamitis said. “Probably, they wanted to keep that revenue stream going.”

Frustratingly, Lumen was not able to determine how the SOHO devices were being infected with AVrecon. Some possible avenues of infection include exploiting weak or default administrative credentials on routers, and outdated, insecure firmware that has known, exploitable security vulnerabilities.

WHO’S BEHIND SOCKSESCORT?

KrebsOnSecurity briefly visited SocksEscort last year and promised a follow-up on the history and possible identity of its proprietors. A review of the earliest posts about this service on Russian cybercrime forums suggests the 12-year-old malware proxy network is tied to a Moldovan company that also offers VPN software on the Apple Store and elsewhere.

SocksEscort began in 2009 as “super-socks[.]com,” a Russian-language service that sold access to thousands of compromised PCs that could be used to proxy traffic. Someone who picked the nicknames “SSC” and “super-socks” and email address “michvatt@gmail.com” registered on multiple cybercrime forums and began promoting the proxy service.

According to DomainTools.com, the apparently related email address “michdomain@gmail.com” was used to register SocksEscort[.]com, super-socks[.]com, and a few other proxy-related domains, including ip-score[.]com, segate[.]org seproxysoft[.]com, and vipssc[.]us. Cached versions of both super-socks[.]com and vipssc[.]us show these sites sold the same proxy service, and both displayed the letters “SSC” prominently at the top of their homepages.

Image: Archive.org. Page translation from Russian via Google Translate.

According to cyber intelligence firm Intel 471, the very first “SSC” identity registered on the cybercrime forums happened in 2009 at the Russian language hacker community Antichat, where SSC asked fellow forum members for help in testing the security of a website they claimed was theirs: myiptest[.]com, which promised to tell visitors whether their proxy address was included on any security or anti-spam block lists.

Myiptest[.]com is no longer responding, but a cached copy of it from Archive.org shows that for about four years it included in its HTML source a Google Analytics code of US-2665744, which was also present on more than a dozen other websites.

Most of the sites that once bore that Google tracking code are no longer online, but nearly all of them centered around services that were similar to myiptest[.]com, such as abuseipdb[.]com, bestiptest[.]com, checkdnslbl[.]com, dnsbltools[.]com and dnsblmonitor[.]com.

Each of these services were designed to help visitors quickly determine whether the Internet address they were visiting the site from was listed by any security firms as spammy, malicious or phishous. In other words, these services were designed so that proxy service users could easily tell if their rented Internet address was still safe to use for online fraud.

Another domain with the Google Analytics code US-2665744 was sscompany[.]net. An archived copy of the site says SSC stands for “Server Support Company,” which advertised outsourced solutions for technical support and server administration.

Leaked copies of the hacked Antichat forum indicate the SSC identity registered on the forum using the IP address 71.229.207.214. That same IP was used to register the nickname “Deem3n®,” a prolific poster on Antichat between 2005 and 2009 who served as a moderator on the forum.

There was a Deem3n® user on the webmaster forum Searchengines.guru whose signature in their posts says they run a popular community catering to programmers in Moldova called sysadmin[.]md, and that they were a systems administrator for sscompany[.]net.

That same Google Analytics code is also now present on the homepages of wiremo[.]co and a VPN provider called HideIPVPN[.]com.

Wiremo sells software and services to help website owners better manage their customer reviews. Wiremo’s Contact Us page lists a “Server Management LLC” in Wilmington, DE as the parent company. Server Management LLC is currently listed in Apple’s App Store as the owner of a “free” VPN app called HideIPVPN.

“The best way to secure the transmissions of your mobile device is VPN,” reads HideIPVPN’s description on the Apple Store. “Now, we provide you with an even easier way to connect to our VPN servers. We will hide your IP address, encrypt all your traffic, secure all your sensitive information (passwords, mail credit card details, etc.) form [sic] hackers on public networks.”

When asked about the company’s apparent connection to SocksEscort, Wiremo responded, “We do not control this domain and no one from our team is connected to this domain.” Wiremo did not respond when presented with the findings in this report.

New Cryptocurrency Mining Campaign Targets Linux Systems and IoT Devices

By Ravie Lakshmanan
Internet-facing Linux systems and Internet of Things (IoT) devices are being targeted as part of a new campaign designed to illicitly mine cryptocurrency. "The threat actors behind the attack use a backdoor that deploys a wide array of tools and components such as rootkits and an IRC bot to steal device resources for mining operations," Microsoft threat intelligence researcher Rotem Sde-Or said.

Hear no evil: Ultrasound attacks on voice assistants

By Márk Szabó

How your voice assistant could do the bidding of a hacker – without you ever hearing a thing

The post Hear no evil: Ultrasound attacks on voice assistants appeared first on WeLiveSecurity

Serious Unpatched Vulnerability Uncovered in Popular Belkin Wemo Smart Plugs

By Ravie Lakshmanan
The second generation version of Belkin's Wemo Mini Smart Plug has been found to contain a buffer overflow vulnerability that could be weaponized by a threat actor to inject arbitrary commands remotely. The issue, assigned the identifier CVE-2023-27217, was discovered and reported to Belkin on January 9, 2023, by Israeli IoT security company Sternum, which reverse-engineered the device and

Highlights from the New U.S. Cybersecurity Strategy

By BrianKrebs

The Biden administration today issued its vision for beefing up the nation’s collective cybersecurity posture, including calls for legislation establishing liability for software products and services that are sold with little regard for security. The White House’s new national cybersecurity strategy also envisions a more active role by cloud providers and the U.S. military in disrupting cybercriminal infrastructure, and it names China as the single biggest cyber threat to U.S. interests.

The strategy says the White House will work with Congress and the private sector to develop legislation that would prevent companies from disavowing responsibility for the security of their software products or services.

Coupled with this stick would be a carrot: An as-yet-undefined “safe harbor framework” that would lay out what these companies could do to demonstrate that they are making cybersecurity a central concern of their design and operations.

“Any such legislation should prevent manufacturers and software publishers with market power from fully disclaiming liability by contract, and establish higher standards of care for software in specific high-risk scenarios,” the strategy explains. “To begin to shape standards of care for secure software development, the Administration will drive the development of an adaptable safe harbor framework to shield from liability companies that securely develop and maintain their software products and services.”

Brian Fox, chief technology officer and founder of the software supply chain security firm Sonatype, called the software liability push a landmark moment for the industry.

“Market forces are leading to a race to the bottom in certain industries, while contract law allows software vendors of all kinds to shield themselves from liability,” Fox said. “Regulations for other industries went through a similar transformation, and we saw a positive result — there’s now an expectation of appropriate due care, and accountability for those who fail to comply. Establishing the concept of safe harbors allows the industry to mature incrementally, leveling up security best practices in order to retain a liability shield, versus calling for sweeping reform and unrealistic outcomes as previous regulatory attempts have.”

THE MOST ACTIVE, PERSISTENT THREAT

In 2012 (approximately three national cyber strategies ago), then director of the U.S. National Security Agency (NSA) Keith Alexander made headlines when he remarked that years of successful cyber espionage campaigns from Chinese state-sponsored hackers represented “the greatest transfer of wealth in history.”

The document released today says the People’s Republic of China (PRC) “now presents the broadest, most active, and most persistent threat to both government and private sector networks,” and says China is “the only country with both the intent to reshape the international order and, increasingly, the economic, diplomatic, military, and technological power to do so.”

Many of the U.S. government’s efforts to restrain China’s technology prowess involve ongoing initiatives like the CHIPS Act, a new law signed by President Biden last year that sets aside more than $50 billion to expand U.S.-based semiconductor manufacturing and research and to make the U.S. less dependent on foreign suppliers; the National Artificial Intelligence Initiative; and the National Strategy to Secure 5G.

As the maker of most consumer gizmos with a computer chip inside, China is also the source of an incredible number of low-cost Internet of Things (IoT) devices that are not only poorly secured, but are probably more accurately described as insecure by design.

The Biden administration said it would continue its previously announced plans to develop a system of labeling that could be applied to various IoT products and give consumers some idea of how secure the products may be. But it remains unclear how those labels might apply to products made by companies outside of the United States.

FIGHTING BADNESS IN THE CLOUD

One could convincingly make the case that the world has witnessed yet another historic transfer of wealth and trade secrets over the past decade — in the form of ransomware and data ransom attacks by Russia-based cybercriminal syndicates, as well as Russian intelligence agency operations like the U.S. government-wide Solar Winds compromise.

On the ransomware front, the White House strategy seems to focus heavily on building the capability to disrupt the digital infrastructure used by adversaries that are threatening vital U.S. cyber interests. The document points to the 2021 takedown of the Emotet botnet — a cybercrime machine that was heavily used by multiple Russian ransomware groups — as a model for this activity, but says those disruptive operations need to happen faster and more often.

To that end, the Biden administration says it will expand the capacity of the National Cyber Investigative Joint Task Force (NCIJTF), the primary federal agency for coordinating cyber threat investigations across law enforcement agencies, the intelligence community, and the Department of Defense.

“To increase the volume and speed of these integrated disruption campaigns, the Federal Government must further develop technological and organizational platforms that enable continuous, coordinated operations,” the strategy observes. “The NCIJTF will expand its capacity to coordinate takedown and disruption campaigns with greater speed, scale, and frequency. Similarly, DoD and the Intelligence Community are committed to bringing to bear their full range of complementary authorities to disruption campaigns.”

The strategy anticipates the U.S. government working more closely with cloud and other Internet infrastructure providers to quickly identify malicious use of U.S.-based infrastructure, share reports of malicious use with the government, and make it easier for victims to report abuse of these systems.

“Given the interest of the cybersecurity community and digital infrastructure owners and operators in continuing this approach, we must sustain and expand upon this model so that collaborative disruption operations can be carried out on a continuous basis,” the strategy argues. “Threat specific collaboration should take the form of nimble, temporary cells, comprised of a small number of trusted operators, hosted and supported by a relevant hub. Using virtual collaboration platforms, members of the cell would share information bidirectionally and work rapidly to disrupt adversaries.”

But here, again, there is a carrot-and-stick approach: The administration said it is taking steps to implement Executive Order (EO) 13984 –issued by the Trump administration in January 2021 — which requires cloud providers to verify the identity of foreign persons using their services.

“All service providers must make reasonable attempts to secure the use of their infrastructure against abuse or other criminal behavior,” the strategy states. “The Administration will prioritize adoption and enforcement of a risk-based approach to cybersecurity across Infrastructure-as-a-Service providers that addresses known methods and indicators of malicious activity including through implementation of EO 13984.”

Ted Schlein, founding partner of the cybersecurity venture capital firm Ballistic Ventures, said how this gets implemented will determine whether it can be effective.

“Adversaries know the NSA, which is the elite portion of the nation’s cyber defense, cannot monitor U.S.-based infrastructure, so they just use U.S.-based cloud infrastructure to perpetrate their attacks,” Schlein said. “We have to fix this. I believe some of this section is a bit pollyannaish, as it assumes a bad actor with a desire to do a bad thing will self-identify themselves, as the major recommendation here is around KYC (‘know your customer’).”

INSURING THE INSURERS

One brief but interesting section of the strategy titled “Explore a Federal Cyber Insurance Backdrop” contemplates the government’s liability and response to a too-big-to-fail scenario or “catastrophic cyber incident.”

“We will explore how the government can stabilize insurance markets against catastrophic risk to drive better cybersecurity practices and to provide market certainty when catastrophic events do occur,” the strategy reads.

When the Bush administration released the first U.S. national cybersecurity strategy 20 years ago after the 9/11 attacks, the popular term for that same scenario was a “digital Pearl Harbor,” and there was a great deal of talk then about how the cyber insurance market would soon help companies shore up their cybersecurity practices.

In the wake of countless ransomware intrusions, many companies now hold cybersecurity insurance to help cover the considerable costs of responding to such intrusions. Leaving aside the question of whether insurance coverage has helped companies improve security, what happens if every one of these companies has to make a claim at the same time?

The notion of a Digital Pearl Harbor incident struck many experts at the time as a hyperbolic justification for expanding the government’s digital surveillance capabilities, and an overstatement of the capabilities of our adversaries. But back in 2003, most of the world’s companies didn’t host their entire business in the cloud.

Today, nobody questions the capabilities, goals and outcomes of dozens of nation-state level cyber adversaries. And these days, a catastrophic cyber incident could be little more than an extended, simultaneous outage at multiple cloud providers.

The full national cybersecurity strategy is available from the White House website (PDF).

Realtek Vulnerability Under Attack: Over 134 Million Attempts to Hack IoT Devices

By Ravie Lakshmanan
Researchers are warning about a spike in exploitation attempts weaponizing a now-patched critical remote code execution flaw in Realtek Jungle SDK since the start of August 2022. According to Palo Alto Networks Unit 42, the ongoing campaign is said to have recorded 134 million exploit attempts as of December 2022, with 97% of the attacks occurring in the past four months. Close to 50% of the

New Go-based Botnet Exploiting Exploiting Dozens of IoT Vulnerabilities to Expand its Network

By Ravie Lakshmanan
A novel Go-based botnet called Zerobot has been observed in the wild proliferating by taking advantage of nearly two dozen security vulnerabilities in the internet of things (IoT) devices and other software. The botnet "contains several modules, including self-replication, attacks for different protocols, and self-propagation," Fortinet FortiGuard Labs researcher Cara Lin said. "It also

Modernizing the Security of Australia’s Largest Fuel Network

By Lisa Snow

Ampol has been Australia’s leading transport fuel company since 1900. What began over 125 years ago is now an organization that powers a country, operating 1,500 retail stores and stations across ANZ, plus 89 depots for refining and importing fuels and lubricants, and 8,200 employees throughout Australia, New Zealand, the United States, and Singapore. And while Ampol’s history goes back a century, they are a modern organization, using internet of things (IoT) technology across operational and retail locations, with sensors on everything from electric vehicle charging units to fuel tank gauges to transportation trucks to refrigeration units inside retail stores.

As a critical energy provider to a country of over 25 million people, Ampol’s security needed to match its evolving infrastructure. As Satish Chowdhary, Network Enterprise Architect, said, “At Ampol, we have implemented sensor technology across our network: from gauges in the fuel tanks to monitor fuel quality and quantity to sensors that monitor the temperature in various refrigerators across our retail sites to ensure goods stay chilled. It’s critical to manage these devices effectively and securely, and that’s where Cisco comes in…With IoT, a major security risk is posed by dodgy legacy devices left unpatched and vulnerable within your network. Cisco’s TrustSec and VLAN segregation automatically isolate vulnerable devices, not exposing the rest of the network to risks from untrusted devices.”

 

Making security an enabler, not a hindrance

In addition to securing the IoT that let’s Ampol monitor and manage its critical operations, Cisco was able to create a comprehensive security environment that solved for their three strategic goals.

“Three key components of our cyber-resilient strategy were isolation, orchestration, and rapid recovery. Cisco SecureX nailed all three providing us a single interface to see all security events, and malicious files, thus expediting how fast we can isolate events and recover,” Chowdhary explained.  “Before using Cisco Secure, security was a hindrance, not an enabler for our IT team, employees, and even customers,” he added.

In fact, Cisco Secure helped Ampol improve their security posture so much that they were able to quickly pivot during the early days of the pandemic.

“When Covid triggered supply challenges during lockdowns, people not being able to access groceries turned to their local service station convenience stores to get what they needed.  For Ampol, maintaining that supply continuity was critical, not just for our business, but for the customers who were relying on us to get their supplies. And all of this was done when many employees were now having to work remotely… This was possible only because we could maintain our revamped locations, staff, clients, and business partners safe on our network – while still maintaining speed and efficiency. Cisco Secure was the ticket to Ampol’s resilience in the face of major change,” Chowdhary said.

Solving security challenges with speed and simplicity

In addition to enabling flexibility against supply chain fluctuations, Ampol is readily protected against  threats, cyberattacks, and other vulnerabilities. Their Cisco security solution included:

  • Cisco Secure Firewall and Identity Service Engines (ISE) allow Ampol’s 3rd-party vendors to safely access the network
  • Cisco Umbrella and Secure Endpoint protected network and wi-fi access at retail locations
  • Cisco Duo protected the SCADA pipeline network users and devices against phishing attacks and established device trust
  • Improved efficiency and threat detection with Cisco SecureX

“The major force for our Cisco Secure investment was simplification by integrating the entire Security portfolio…If we ever happen to have a cyber-attack, we can quickly find it and contain it,” Chowdhary said, adding, “The greatest outcome of using Cisco Secure is simplicity at its core. We achieved great efficiency integration, better visibility, and context that’s not hidden across five, ten, or fifteen consoles, and ultimately, greater security outcomes.”

To find out how else Cisco Secure is helping protect Ampol against sophisticated threats and other challenges, read the full Ampol case study.


We’d love to hear what you think. Ask a Question, Comment Below, and Stay Connected with Cisco Secure on social!

Cisco Secure Social Channels

Instagram
Facebook
Twitter
LinkedIn

SiriusXM Vulnerability Lets Hackers Remotely Unlock and Start Connected Cars

By Ravie Lakshmanan
Cybersecurity researchers have discovered a security vulnerability that exposes cars from Honda, Nissan, Infiniti, and Acura to remote attacks through a connected vehicle service provided by SiriusXM. The issue could be exploited to unlock, start, locate, and honk any car in an unauthorized manner just by knowing the vehicle's vehicle identification number (VIN), researcher Sam Curry said in a 

3 New Vulnerabilities Affect OT Products from German Companies Festo and CODESYS

By Ravie Lakshmanan
Researchers have disclosed details of three new security vulnerabilities affecting operational technology (OT) products from CODESYS and Festo that could lead to source code tampering and denial-of-service (DoS). The vulnerabilities, reported by Forescout Vedere Labs, are the latest in a long list of flaws collectively tracked under the name OT:ICEFALL. "These issues exemplify either an

Talking IoT Security at the White House

By Nancy Cam-Winget

Last week, I was privileged to participate in an important national summit on IoT Security convened by Anne Neuberger, Deputy National Security Advisor for Cyber and Emerging Technologies. 

Representatives from across the US government, industry, and academia were invited to the White House to discuss a National Consumer IoT Security Labeling program.   

In short, we were all there to solve the same problem: how do we raise awareness of the IoT security challenge among all consumers? Cisco appreciates the Biden administration’s efforts to drive better security into the consumer space given how interconnected our world is. We also underscored the importance of intelligent, intuitive networks in securely connecting the “things” being brought online daily—and in managing the billions of smart devices already in our homes and offices.  

Consumer devices—from televisions and cameras to drones and baby monitors—have become attack targets as we have embraced connectivity without necessarily following proper security measures. This has been demonstrated by attacks that access cameras within these smart devices. But this issue extends beyond attacks and includes breaches of privacy too. If improperly secured, capabilities intended to enable smart features and accessibility, or improve user experience, can be abused by hackers to steal identities, generate data breaches, facilitate device failure, or even serve as stepping-stones to broader attacks on critical infrastructure.   

A prominent example of how security flaws in consumer devices can lead to broader disruption was demonstrated by the Mirai botnet in 2016. What appeared initially as a targeted attack, quickly spread and caused global havoc. Fueled by compromised connected consumer devices—like cameras, DVRs and home routers—a Distributed Denial of Service attack (DDoS) impacted its customers’ sites such as Twitter, Netflix, and CNN to name a few. Mirai highlighted how consumer devices connecting to the network can go beyond the walls of a consumer’s home to breach larger institutions and services—all the while being unknown to the consumer and without impact the devices’ functions. 

So how do we raise consumer awareness about these breaches? And how do we protect users and prevent these breaches in the future? The discussion at the White House focused on now best to effectuate the national program for IoT security labeling, which was required by President Biden’s executive order last May. Key stakeholders presented potentially promising new ideas for device certification, labels for secure devices, and ways to incentivize adoption of these standards. 

Though the focus was on consumer IoT devices, we also discussed the broader implications of the need to raise awareness among consumers about the devices they use at home and in the office. This is where the importance of visibility and network security becomes a strong protector: once these devices can be identified, the network can provide the right access controls (e.g., segmenting the network so that such devices do not infiltrate the main network). 

As the IoT market continues to evolve and mature, we look forward to working with the US government, policymakers, industry forums, and partners to drive open, standardized holistic IoT security and privacy practices. Accomplishing this will help more power a more secure, connected future for all.


We’d love to hear what you think. Ask a Question, Comment Below, and Stay Connected with Cisco Secure on social!

Cisco Secure Social Channels

Instagram
Facebook
Twitter
LinkedIn

8 questions to ask yourself before getting a home security camera

By Phil Muncaster

As each new smart home device may pose a privacy and security risk, do you know what to look out for before inviting a security camera into your home?

The post 8 questions to ask yourself before getting a home security camera appeared first on WeLiveSecurity

‘How Are They Weapons? That’s Only a Flashlight!’

By Suzanne Sataline
During the protests in Hong Kong, young people carried laser pointers, umbrellas, and plastic ties—objects that sometimes led to their arrest, and years of legal limbo.

Lumos System Can Find Hidden Cameras and IoT Devices in Your Airbnb or Hotel Room

By Ravie Lakshmanan
A group of academics has devised a system that can be used on a phone or a laptop to identify and locate Wi-Fi-connected hidden IoT devices in unfamiliar physical spaces. With hidden cameras being increasingly used to snoop on individuals in hotel rooms and Airbnbs, the goal is to be able to pinpoint such rogue devices without much of a hassle. The system, dubbed Lumos, is designed with this

New Hacker Group Pursuing Corporate Employees Focused on Mergers and Acquisitions

By Ravie Lakshmanan
A newly discovered suspected espionage threat actor has been targeting employees focusing on mergers and acquisitions as well as large corporate transactions to facilitate bulk email collection from victim environments. Mandiant is tracking the activity cluster under the uncategorized moniker UNC3524, citing a lack of evidence linking it to an existing group. However, some of the intrusions are

The Wearable Future Is Hackable. Here’s What You Need To Know

By McAfee

Quick mental math challenge: How many Apple Watches can you buy with $118 billion dollars? If you guessed around 296 million watches congrats, you’re smarter than the writer of this blog! We had to use a calculator. The point is that’s the predicted size of the US wearable market by 2028 according to a recent report. That means for as much wearable tech as we have in our lives already, even more, is on the way. 

If you own a piece of wearable tech it’s easy to understand why it’s so popular. After all, it can track our fitness, provide contextual help in daily life, and, in the case of hearing aids, even do cool things like sync with Bluetooth. As VR and AR gains a foothold who knows what other incredible tech might be headed our way by 2028? However wearable tech also comes with certain risks. The most prominent: cybercriminals potentially gaining access to your data. 

How can criminals gain access to your wearable data? 

The weakest link in the wearables space is your mobile phone, not the actual wearable device itself. That’s because wearables tend to link to your mobile device over a short-range wireless spectrum known as “Bluetooth.” This spectrum is used to send and receive data between your wearable device and your mobile. That makes your mobile a prime target for hackers. 

Most commonly, hackers gain access to the data on your mobile through malware-laden apps. These apps are oftentimes designed to look like popular apps, but with enough differences that they don’t flag copyright suspicion. 

What are they doing with my wearable data?

Hackers can use these malicious apps to do a variety of things from making phone calls without your permission, sending and receiving texts, and extracting personal informationall potentially without your knowledge. They can also, with the help of your wearable, track your location through GPS and record any health issues you’ve entered into your wearable. The point is: once they have permissions to your mobile device, they have a lot of control and a lot of resources. 

The hacker can then use this data to conduct varying forms of fraud. Need a special prescription from your doctor that happens to sell well on the black market? Well, so does the hacker. Going out for a jog in the morning? Good information for a burglar to know. These personal details just scratch the surface of information available for the taking on your mobile devices.

Beyond wearables and into the internet of things

These types of threats aren’t limited to wearables, however. The Internet of Things—the phenomenon of devices connected to the Internet for analysis and optimization—encompasses all sorts of other electronic devices such as washing machines and refrigerators that can put your data at risk as well. But these life-changing devices can be secured through education and industry standards. Two things we’re working on day and night. 

Defend your wearables and your personal information

  • Use a PIN. All of your mobile devices ought to have a personal identification number (PIN). This basic security method is a great way of dissuading casual hackers or thieves from stealing your data. 
  • Limit what you share. Most wearables don’t need access to every piece of information about you. You can lessen the likelihood of your wearable sharing sensitive information by only entering the information your wearable device requires. On the flip side, always double-check the permissions that the wearables app is requesting on your mobile device. Does it really need access to your location, camera roll, and address book? If not, be sure to alter these settings appropriately. 
  • Use identity protection. Identity protection can monitor your accounts online – accounts tied to your wearable – so you can receive alerts if that information has been compromised or found online. If it has, a service like McAfee’s Identity Protection Service may also provide insurance and loss remediation as well.

Of course, securing the weakest link in your wearables environment, your phone will go a long way towards keeping your data safe. But what happens when your computer, where you store backups of your smartphone, is compromised too? We’ve got you covered with McAfee LiveSafe™ service, our comprehensive security solution that provides protection for your entire online life. 

The post The Wearable Future Is Hackable. Here’s What You Need To Know appeared first on McAfee Blog.

What Is a DDoS Attack and How to Stay Safe from Malicious Traffic Schemes

By McAfee
What is a DDoS attack?

What Is a DDoS Attack and How to Stay Safe from Malicious Traffic Schemes

Imagine you’re driving down a highway to get to work. There are other cars on the road, but by and large everyone is moving smoothly at a crisp, legal speed limit. Then, as you approach an entry ramp, more cars join. And then more, and more, and more until all of the sudden traffic has slowed to a crawl. This illustrates a DDoS attack.

DDoS stands for Distributed Denial of Service, and it’s a method where cybercriminals flood a network with so much malicious traffic that it cannot operate or communicate as it normally would. This causes the site’s normal traffic, also known as legitimate packets, to come to a halt. DDoS is a simple, effective and powerful technique that’s fueled by insecure devices and poor digital habits. Luckily, with a few easy tweaks to your everyday habits, you can safeguard your personal devices against DDoS attacks.

DDoS Attacks Are on the Rise

The expansion of 5G, proliferation of IoT and smart devices, and shift of more industries moving their operations online have presented new opportunities for DDoS attacks. Cybercriminals are taking advantage, and 2020 saw two of the largest DDoS offensives ever recorded. In 2020, ambitious attacks were launched on Amazon and Google. There is no target too big for cybercriminals.

DDoS attacks are one of the more troubling areas in cybersecurity, because they’re incredibly difficult to prevent and mitigate.. Preventing these attacks is particularly difficult because malicious traffic isn’t coming from a single source. There are an estimated 12.5 million devices that are vulnerable to being recruited by a DDoS attacker.

Personal Devices Become DDoS Attack Soldiers

DDoS attacks are fairly simple to create. All it takes are two devices that coordinate to send fake traffic to a server or website. That’s it. Your laptop and your phone, for example, could be programmed to form their own DDoS network (sometimes referred to as a botnet, more below). However, even if two devices dedicate all of their processing power in an attack, it still isn’t enough to take down a website or server. Hundreds and thousands of coordinated devices are required to take down an entire service provider.

To amass a network of that size, cybercriminals create what’s known as a “botnet,” a network of compromised devices that coordinate to achieve a particular task. Botnets don’t always have to be used in a DDoS attack, nor does a DDoS have to have a botnet to work, but more often than not they go together like Bonnie and Clyde. Cybercriminals create botnets through fairly typical means: tricking people into downloading malicious files and spreading malware.

But malware isn’t the only means of recruiting devices. Because a good deal of companies and consumers practice poor password habits, malicious actors can scan the internet for connected devices with known factory credentials or easy-to-guess passwords (“password,” for example). Once logged in, cybercriminals can easily infect and recruit the device into their cyber army.

Why DDoS Launches Are Often Successful

These recruited cyber armies can lie dormant until they’re given orders. This is where a specialized server called a command and control server (typically abbreviated as a “C2”) comes into play. When instructed, cybercriminals will order a C2 server to issue instructions to compromised devices. Those devices will then use a portion of their processing power to send fake traffic to a targeted server or website and, voila! That’s how a DDoS attack is launched.

DDoS attacks are usually successful because of their distributed nature, and the difficulty in discerning between legitimate users and fake traffic. They do not, however, constitute a breach. This is because DDoS attacks overwhelm a target to knock it offline — not to steal from it. Usually DDoS attacks will be deployed as a means of retaliation against a company or service, often for political reasons. Sometimes, however, cybercriminals will use DDoS attacks as a smokescreen for more serious compromises that may eventually lead to a full-blown breach.

3 Ways to Prevent Your Devices from Being Recruited

DDoS attacks are only possible because devices can be easily compromised. Here are three ways you can prevent your devices from participating in a DDoS attack:

  1. Secure your router: Your Wi-Fi router is the gateway to your network. Secure it by changing the default password. If you’ve already thrown out the instructions for your router and aren’t sure how to do this, consult the internet for instructions on how to do it for your specific make and model, or call the manufacturer. And remember, protection can start within your router, too. Solutions such as McAfee Secure Home Platform, which is embedded within select routers, help you easily manage and protect your network.
  2. Change default passwords on IoT devices: Many Internet of Things (IoT) devices, smart objects that connect to the internet for increased functionality and efficiency, come with default usernames and passwords. The very first thing you should do after taking your IoT device out of the box is change those default credentials. If you’re unsure of how to change the default setting on your IoT device, refer to setup instructions or do a bit of research online.
  3. Use comprehensive security: Many botnets are coordinated on devices without any built-in security. Comprehensive security solutions, like McAfee Total Protection, can help secure your most important digital devices from known malware variants. If you don’t have a security suite protecting your devices, take the time to do your research and commit to a solution you trust.

Now that you know what a DDoS attack is and how to protect against it, you’re better equipped to keep your personal devices and safe and secure.

Stay Updated

To stay updated on all things McAfee and on top of the latest consumer and mobile security threats, follow @McAfee_Home on Twitter, subscribe to our email, listen to our podcast Hackable?, and ‘Like’ us on Facebook.

 

The post What Is a DDoS Attack and How to Stay Safe from Malicious Traffic Schemes appeared first on McAfee Blogs.

Black Hat Trip Report – Trend Micro

By William "Bill" Malik (CISA VP Infrastructure Strategies)

At Black Hat USA 2020, Trend Micro presented two important talks on vulnerabilities in Industrial IoT (IIoT). The first discussed weaknesses in proprietary languages used by industrial robots, and the second talked about vulnerabilities in protocol gateways. Any organization using robots, and any organization running a multi-vendor OT environment, should be aware of these attack surfaces. Here is a summary of the key points from each talk.

Rogue Automation

Presented at Black Hat, Wednesday, August 5. https://www.blackhat.com/us-20/briefings/schedule/index.html#otrazor-static-code-analysis-for-vulnerability-discovery-in-industrial-automation-scripts-19523 and the corresponding research paper is available at https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/unveiling-the-hidden-risks-of-industrial-automation-programming

Industrial robots contain powerful, fully capable computers. Unlike most contemporary computers, though, industrial robots lack basic information security capabilities. First, at the architectural level, they lack any mechanism to isolate certain instructions or memory. That is, any program can alter any piece of storage, or run any instruction. In traditional mainframes, no application could access, change, or run any code in another application or in the operating system. Even smartphone operating systems have privilege separation. An application cannot access a smartphone’s camera, for instance, without being specifically permitted to do so. Industrial robots allow any code to read, access, modify, or run any device connected to the system, including the clock. That eliminates data integrity in industrial robots and invalidates any audit of malfunctions; debugging becomes exceptionally difficult.

Industrial robots do not use conventional programming languages, like C or Python. Instead, each manufacturer provides its own proprietary programming language. That means a specialist using one industrial robot cannot use another vendor’s machine without training. There are no common information security tools for code validation, since vendors do not develop products for fragmented markets. These languages describe programs telling the robot how to move. They also support reading and writing data, analyzing and modifying files, opening and closing input/output devices, getting and sending information over a network, and accessing and changing status indicators on connected sensors. Once a program starts to run on an industrial robot, it can do anything any fully functional computer can do, without any security controls at all. Contemporary industrial robots do not have any countermeasures against this threat.

Most industrial robot owners do not write their own programs. The supply chain for industrial robot programs involves many third-party actors. See Figure 1 below for a simplified diagram. In each community, users of a particular vendor’s languages share code informally, and rely on user’s groups for hints and tips to solve common tasks. These forums rarely discuss security measures. Many organizations hire third-party contractors to implement particular processes, but there are no security certifications relevant to these proprietary languages. Most programmers learned their trade in an air-gapped world, and still rely on a perimeter which separates the safe users and code inside from the untrusted users and code outside. The languages offer no code scanners to identify potential weaknesses, such as not validating inputs, modifying system services, altering device state, or replacing system functions. The machines do not have a software asset management capability, so knowing where the components of a running program originated from is uncertain.

Figure 1: The Supply Chain for Industrial Robot Programming

All is not lost – not quite. In the short term, Trend Micro Research has developed a static code analysis tool called OTRazor, which examines robotic code for unsafe code patterns. This was demonstrated during our session at Black Hat.

Over time, vendors will have to introduce basic security checks, such as authentication, authorization, data integrity, and data confidentiality. The vendors will also have to introduce architectural restrictions – for instance, an application should be able to read the clock but not change it.. Applications should not be able to modify system files, programs, or data, nor should they be able to modify other applications. These changes will take years to arrive in the market, however. Until then, CISOs should audit industrial robot programs for vulnerabilities, and segment networks including industrial robots, and apply baseline security programs, as they do now, for both internally developed and procured software.

Protocol Gateway Vulnerabilities

Presented at Black Hat, Wednesday, August 5, https://www.blackhat.com/us-20/briefings/schedule/index.html#industrial-protocol-gateways-under-analysis-20632, with the corresponding research paper available here: https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/lost-in-translation-when-industrial-protocol-translation-goes-wrong.

Industry 4.0 leverages the power of automation alongside the rich layer of software process control tools, particularly Enterprise Resource Planning (ERP), and its bigger cousin, Supply Chain Management (SCM). By bringing together dynamic industrial process control with hyper-efficient “just-in-time” resource scheduling, manufacturers can achieve minimum cost, minimum delay, and optimal production. But these integration projects require that IIoT devices speak with other technology, including IIoT from other manufacturers and legacy equipment. Since each equipment or device may have their own communication protocol, Industry 4.0 relies heavily on protocol converters.

Protocol converters are simple, highly efficient, low-cost devices that translate one protocol into another. Protocol converters are ubiquitous, but they lack any basic security capabilities – authentication, authorization, data integrity or data confidentiality – and they sit right in the middle of the OT network. Attackers can subvert protocol converters to hijack the communication or change configuration. An attacker can disable a safety thresholds, generate a denial of service attack, and misdirect an attached piece of equipment.

In the course of this research, we found nine vulnerabilities and are working with vendors to remediate the issues. Through our TXOne subsidiary, we are developing rules and intelligence specifically for IIoT message traffic, which are then embedded in our current network security offerings, providing administrators with better visibility and the ability to enforce security policies in their OT networks.

Protocol converters present a broad attack surface, as they have limited native information security capabilities. They don’t validate senders or receivers, nor do they scan or verify message contents. Due to their crucial position in the middle of the OT network, they are an exceptionally appealing target for malicious actors. Organizations using protocol converters – especially those on the way to Industry 4.0 – must address these weak but critical components of their evolving infrastructure.

What do you think? Let me know in the comments below or @WilliamMalikTM

The post Black Hat Trip Report – Trend Micro appeared first on .

ISO/SAE 21434: It’s time to put the brakes on connected car cyber-threats

By William "Bill" Malik (CISA VP Infrastructure Strategies)

Connected cars are on the move. Globally their number is set to grow 270% between 2018 and 2022 to reach an estimated 125 million in a couple of years. Increasingly, these vehicles are more akin to high-performance mobile computers with wheels than traditional cars, with features including internet access, app-based remote monitoring and management, advanced driver-assistance, and autonomous driving capabilities. But this also leaves them exposed to sensitive data theft and remote manipulation, which could create serious physical safety issues.

This is where a new standard comes in. ISO/SAE 21434 creates detailed guidance for the automotive industry to help it navigate these challenges and reduce reputational and cyber-risk. A new report from Trend Micro details what industry stakeholders need to, along with our recommendations as cybersecurity experts.

Packed with power

Modern automobiles do far more than transport their occupants from A to B. They are filled with computing power, sensors, infotainment systems and connectivity to help improve the car experience, traffic safety, vehicle maintenance and much more. This all creates complexity, which in turn leads to the emergence of cybersecurity gaps.

For example, there are now more than 100 engine control units (ECUs) in many modern vehicles, packed with software to control everything from the engine and suspension to the brakes. By hijacking the execution of any ECU an attacker could move laterally to any target in the vehicle, potentially allowing them to remotely cause life-threatening accidents.

As our report explains, there are three fundamental issues that make securing connected cars challenging:

Vulnerabilities are difficult to patch due to the highly tiered mature of car supply chains, firmware interoperability and long update times. If updates fail, as they can, a vehicle may be left inoperable.

Protocols used for connectivity between ECUs were not designed with security in mind, allowing attackers to conduct lateral movement.

Aftermarket products and services represent a third area of risk exposure. Akin to unsecured IoT devices in the smart home, they can be abused by attackers to pivot to more sensitive parts of the vehicle.

These vulnerabilities have been highlighted in research dating back years, but as connected cars grow in number, real-world attacks are now starting to emerge. Attack scenarios target everything from user applications to network protocols, to the CAN bus, on-board software and more. In short, there’s much for the bad guys to gain and plenty for carmakers to lose.

Here to help

This is where the new standard comes in. ISO/SAE 21434 “Road vehicles – Cybersecurity engineering” is a typically long and detailed document designed to improve automotive cybersecurity and risk mitigation across the entire supply chain — from vehicle design and engineering through to decommissioning.

As a long-time collaborator with the automotive industry, Trend Micro welcomes the new standard as a way to enhance security-by-design in an area coming under the increasing scrutiny of attackers. In fact, eight out of the world’s top 10 automotive companies have adopted Trend Micro solutions for their enterprise IT.

In order to follow ISO/SAE 21434 and protect connected cars, organizations need comprehensive visibility and control of the entire connected car ecosystem, including: vehicle, network and backend systems. They should then consider developing a Vehicle Security Operations Center (VSOC) to manage notifications coming in from all three areas and to create a bird’s eye view of the entire ecosystem.

Consider the following capabilities in each of these key areas:

Vehicle: Detect in-vehicle vulnerabilities and possible exploitation, including those in critical devices that connected the in-vehicle network to outside networks, for instance, in-vehicle infotainment systems (IVI) and telematic control units (TCUs).

Network: Apply network security policy, monitoring traffic to detect and prevent threats including connections between vehicle and backend cloud and data centers.

Backend: Secure data centers, cloud and containers from known and unknown threats and bugs without compromising performance.

Vehicle SOC: Take quick and effective action by correlating threats detected from the endpoint, network, and backend with individual notifications from each, enabling a bird’s eye view of comprehensive elements.

In uncertain times for the industry, it pays to get ahead of the game, and any prospective changes in local laws that the new ISO/SAE standard may encourage. For carmakers looking to differentiate in a tough market, and do the right thing by protecting their customers, Trend Micro is here to help.

To find out more, read the full report here.

The post ISO/SAE 21434: It’s time to put the brakes on connected car cyber-threats appeared first on .

Connected Car Standards – Thank Goodness!

By William "Bill" Malik (CISA VP Infrastructure Strategies)

Intelligent transportation systems (ITS) require harmonization among manufacturers to have any chance of succeeding in the real world. No large-scale car manufacturer, multimodal shipper, or MaaS (Mobility as a Service) provider will risk investing in a single-vendor solution. Successful ITS require interoperable components, especially for managing cybersecurity issues. See https://www.trendmicro.com/vinfo/us/security/news/intelligent-transportation-systems for a set of reports on ITS cybersecurity.

The good news is we now have a standard for automotive cybersecurity, ISA/SAE 21434. This standard addresses all the major elements of connected car security including V2X, reaching from the internals of ECUs and communications busses including CAN to the broader issues of fleet management and public safety. See https://www.iso.org/standard/70918.html for the current draft version of this standard.

Intelligent transport systems rely on complex, contemporary infrastructure elements, including cloud (for data aggregation, traffic analysis, and system-wide recommendations) and 5G (for inter-component networking and real-time sensing). ITS also rely on aging industrial control systems and components, for vehicle detection, weather reporting, and traffic signaling, some dating back forty years or more. This profound heterogeneity makes the cybersecurity problem unwieldy. Automotive systems generally are the most complex public-facing applications of industrial IoT. Any information security problems with them will erode public trust in this important and ultimately critical infrastructure.

Robert Bosch GmbH began working on the first automotive bus architecture in 1986. Automobiles gained increasing electronic functions (smog controls, seat belt monitors, electric window controls, climate controls, and so on). With each new device, the manufacturers had to install additional point-to-point wiring to monitor and control them. This led to increasing complexity, the possibility for error, extended manufacturing time, more costly diagnosis and repair post-sales, and added weight. See Figure 1 for details. By replacing point-to-point wiring with a simple bus, manufacturers could introduce new features connected with one pair of wires for control. This simplified design, manufacturing, diagnosis, and improved quality and maintainability.

Figure 1: CAN Networks Significantly Reduce Wiring (from National Instruments https://www.ni.com/en-us/innovations/white-papers/06/controller-area-network–can–overview.html)

The bus was simple: all devices saw all traffic and responded to messages relevant to them. Each message has a standard format, with a header describing the message content and priority (the arbitration IDs), the body which contains the relevant data, and a cyclic redundancy check (CRC), which is a code to verify that the message contents are accurate. This CRC uses a mathematical formula to determine if any bits have flipped, and for small numbers of errors can correct the message, like a checksum. This is not as powerful as a digital signature. It has no cryptographic power. Every device on the bus can use the CRC algorithm to create a code for messages it sends and to verify the data integrity of messages it receives. Other than this, there is no data confidentiality, authentication, authorization, data integrity, or non-repudiation in CAN bus messages – or any other automotive bus messages. The devices used in cars are generally quite simple, lightweight, and inexpensive: 8-bit processors with little memory on board. Any device connected to the network is trusted. Figure 2 shows the layout of a CAN bus message.

Figure 2: The Standard CAN Frame Format, from National Instruments

Today’s automobiles have more sophisticated devices on board. The types of messages and the services the offer are becoming more complex. In-vehicle infotainment (IVI) systems provide maps, music, Bluetooth connectivity for smartphones and other devices, in addition to increasingly more elaborate driving assistance and monitoring systems all add more traffic to the bus. But given the diversity of manufacturers and suppliers, impeding security measures over the automotive network. No single vendor could today achieve what Robert Bosch did nearly forty years ago. Yet the need for stronger vehicle security is growing.

The ISO/SAE 21434 standard describes a model for securing the supply chain for automotive technology, for validating the integrity of the development process, detecting vulnerabilities and cybersecurity attacks in automotive systems, and managing the deployment of fixes as needed. It is comprehensive. ISO/SAE 21434 builds on decades of work in information security. By applying that body of knowledge to the automotive case, the standard will move the industry towards a safer and more trustworthy connected car world.

But the standard’s value doesn’t stop with cars and intelligent transport systems. Domains far beyond connected cars will benefit from having a model for securing communications among elements from diverse manufacturers sharing a common bus. The CAN bus and related technologies are used onboard ships, in aircraft, in railroad management, in maritime port systems, and even in controlling prosthetic limbs. The vulnerabilities are common, the complexity of the supply chain is equivalent, and the need for a comprehensive architectural solution is as great. So this standard is a superb achievement and will go far to improve the quality, reliability, and trustworthiness of critical systems globally.

What do you think? Let me know in the comments below or @WilliamMalikTM.

The post Connected Car Standards – Thank Goodness! appeared first on .

Securing Smart Manufacturing

By William "Bill" Malik (CISA VP Infrastructure Strategies)
IIoT

“Alexa, turn on the TV.”

”Get it yourself.”

This nightmare scenario could play out millions of times unless people take steps to protect their IoT devices. The situation is even worse in industrial settings. Smart manufacturing, that is, Industry 4.0, relies on tight integration between IT systems and OT systems. Enterprise resource planning (ERP) software has evolved into supply chain management (SCM) systems, reaching across organizational and national boundaries to gather all forms of inputs, parting out subcomponent development and production, and delivering finished products, payments, and capabilities across a global canvas.

Each of these synergies fulfills a rational business goal: optimize scarce resources across diverse sources; minimize manufacturing, shipping, and warehousing expense across regions; preserve continuity of operations by diversifying suppliers; maximize sales among multiple delivery channels. The supply chain includes not only raw materials for manufacturing, but also third party suppliers of components, outsourced staff for non-core business functions, open source software to optimize development costs, and subcontractors to fulfill specialized design, assembly, testing, and distribution tasks. Each element of the supply chain is an attack surface.

Software development has long been a team effort. Not since the 1970s have companies sought out the exceptional talented solo developer whose code was exquisite, flawless, ineffable, undocumented, and impossible to maintain.  Now designs must be clear across the team, and testing requires close collaboration between architects, designers, developers, and production. Teams identify business requirements, then compose a solution from components sourced from publically shared libraries. These libraries may contain further dependencies on yet other third-party code of unknown provenance. Simplified testing relies on the quality of the shared libraries, but shared library routines may have latent (or intentionally hidden) defects that do not come to life until in a vulnerable production environment. Who tests GitHub? The scope of these vulnerabilities is daunting. Trend Micro just published a report, “Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis,” that surveys the Industry 4.0 attack surface.

Within the manufacturing operation, the blending of IT and OT exposes additional attack surfaces. Industrial robots provide a clear example. Industrial robots are tireless, precision machines programmed to perform exacting tasks rapidly and flawlessly. What did industry do before robots? Factories either relied on hand-built products or on non-programmable machines that had to be retooled for any change in product specifications. Hand-built technology required highly skilled machinists, who are expensive and require time to deliver. See Figure 1 for an example.

Figure 1: The cost of precision

Non-programmable robots require factory down time for retooling, a process that can take weeks. Before programmable industrial robots, automobile factories would deliver a single body style across multiple years of production. Programmable robots can produce different configurations of materials with no down time. They are used everywhere in manufacturing, warehousing, distribution centers, farming, mining, and soon guiding delivery vehicles. The supply chain is automated.

However, the supply chain is not secure. The protocols industrial robots depend on assumed the environment was isolated. One controller would govern the machines in one location. Since the connection between the controller and the managed robots was hard-wired, there was no need for operator identification or message verification. My controller would never see your robot. My controller would only connect to my robot, so the messages they exchanged needed no authentication. Each device assumed all its connections were externally verified. Even the safety systems assumed the network was untainted and trustworthy. No protocols included any security or privacy controls. Then Industry 4.0 adopted wireless communications.

The move, which saved the cost of laying cable in the factory, opened those networks to eavesdropping and attacks. Every possible attack against industrial robots is happening now. Bad guys are forging commands, altering specifications, changing or suppressing error alerts, modifying output statistics, and rewriting logs. The consequences can be vast yet nearly undetectable. In the current report on Rogue Robots, our Forward-looking Threat Research team, collaborating with the Politecnico di Milano (POLIMI), analyzes the range of specific attacks today’s robots face, and the potential consequences those attacks may have.

Owners and operators of programmable robots should heed the warnings of this research, and consider various suggested remedies. Forewarned is forearmed.

The Rogue Robots research is here: https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/rogue-robots-testing-industrial-robot-security.

The new report, Attacks on Smart Manufacturing Systems: A Forward-looking Security Analysis, is here: https://www.trendmicro.com/vinfo/us/security/threat-intelligence-center/internet-of-things/threats-and-consequences-a-security-analysis-of-smart-manufacturing-systems.

What do you think? Let me know in the comments below, or @WilliamMalikTM.

The post Securing Smart Manufacturing appeared first on .

❌