FreshRSS

🔒
❌ About FreshRSS
There are new available articles, click to refresh the page.
Before yesterdayYour RSS feeds

6 Best Practices for SecOps in the Wake of the Sunburst Threat Campaign

By Ismael Valenzuela
Strong passwords

1. Attackers have a plan, with clear objectives and outcomes in mind. Do you have one?

Clearly this was a motivated and patient adversary. They spent many months in the planning and execution of an attack that was not incredibly sophisticated in its tactics, but rather used multiple semi-novel attack methods combined with persistent, stealthy and well-orchestrated processes. In a world where we always need to find ways to stay even one step ahead of adversaries, how well is your SOC prepared to bring the same level of consistent, methodical and well-orchestrated visibility and response when such an adversary comes knocking at your door? 

Plan, test and continuously improve your SecOps processes with effective purple-teaming exercises. Try to think like a stealthy attacker and predict what sources of telemetry will be necessary to detect suspicious usage of legitimate applications and trusted software solutions.

2. Modern attacks abuse trust, not necessarily vulnerabilities. Bethreat focused. Do threat modeling and identify where the risks are. Leverage BCP data and think of your identity providers (AD Domain Controllers, Azure AD, etc.) as ‘crown jewels’.

Assume that your most critical assets are under attack, especially those that leverage third-party applications where elevated privileges are a requirement for their effective operation. Granting service accounts unrestricted administrative privileges sounds like a bad idea – because it is. Least-privilege access, micro segmentation and ingress/egress traffic filtering should be implemented in support of a Zero-Trust program for those assets specifically that allow outside access by a ‘trusted’ 3rd-party.

3. IOCs are becoming less useful as attackers don’t reuse them, sometimes even inside the same victim. Focus on TTPs & behaviors.

The threat research world has moved beyond atomic indicators, file hashes and watchlists of malicious IPs and domains upon which most threat intelligence providers still rely. Think beyond Indicators of Compromise. We should rely less on static lists of artifacts but instead focused on heuristics and behavioral indicators. Event-only analysis can easily identify the low-hanging fruit of commodity attack patterns, but more sophisticated adversaries are going to make it more difficult. Ephemeral C2 servers and single-use DNS entries per asset (not target enterprise) were some of the more well-planned (yet relatively simple) behaviors seen in the Sunburst attack. Monitor carefully for changes in asset configuration like logging output/location or even the absence of new audit messages in a given polling period.  

4. Beware of the perfect attack fallacy. Attackers can’t innovate across the entire attack chain. Identify places where you have more chances to detect their presence (i.e. privilege escalation, persistency, discovery, defense evasion, etc.)

All telemetry is NOT created equal. Behavioral analysis of authentication events in support of UEBA detections can be incredibly effective, but that assumes identity data is available in the event stream. Based on my experience, SIEM data typically yields only 15-20% of events that include useful identity data, whereas almost 85% of cloud access events contain this rich contextual data, a byproduct of growing IAM adoption and SSO practices. Events generated from critical assets (crown jewels) are of obvious interest to SecOps analysts for both detection and investigation, but don’t lose sight of those assets on the periphery; perhaps an RDP jump box sitting in the DMZ that also synchronizes trust with enterprise AD servers either on-premises or in the cloud. Find ways to isolate assets with elevated privilege or those running ‘trusted’ third-party applications using micro segmentation where behavioral analysis can more easily be performed. Leverage volumetric analysis of network traffic to identify potentially abnormal patterns; monitor inbound and outbound requests (DNS, HTTP, FTP, etc) to detect when a new session has been made to/from an unknown source/destination – or where the registration age of the target domain seems suspiciously new. Learn what ‘normal’ looks like from these assets by baselining and fingerprinting, so that unusual activity can be blocked or at the very least escalated to an analyst for review. 

5. Architect your defenses for visibility, detection & response to augment protection capabilities. Leverage EDR, XDR & SIEM for historical and real-time threat hunting.

The only way to gain insight into the attacker behaviors – and any chance of detecting and disrupting attacks of this style – require extensive telemetry from a wide array of sensors. Endpoint sensor grids provide high-fidelity telemetry about all things on-device but are rarely deployed on server assets and tend to be network-blind. SIEMs have traditionally been leveraged to consume and correlate data from all 3rd-party data sources, but it likely does not have the ability (or scale) to consume all EDR/endpoint events, leaving them largely endpoint-blind. As more enterprise assets and applications move to the cloud, we have yet a third source of high-value telemetry that must be available to SOC analysts for detection and investigation. Threat hunting can only effectively be performed when SecOps practitioners have access to a broad range of real-time and historical telemetry from a diverse sensor grid that spans the entire enterprise. They need the ability to look for behaviors – not just events or artifacts – across the full spectrum of enterprise assets and data. 

6. In today’s #cyberdefensegame it’s all about TIME. 

Time can be an attacker’s best offense, sometimes because of the speed with which they can penetrate, reconnoiter, locate and exfiltrate sensitive data – a proverbial ‘smash-and-grab’ looting. Hardly subtle and quickly noticed for the highly visible crime that it is. However in the case of Sunburst the adversary used time to their advantage, this time making painstakingly small and subtle changes to code in the software supply chain to weaponize a trusted application, waiting for it to be deployed across a wide spectrum of enterprises and governmental agencies, quietly performing reconnaissance on the affected asset and those around it, and leveraging low-and-slow C2 communications over a trusted protocol like DNS. Any one of these activities might easily be overlooked by even the most observant SOC. This creates an even longer detection cycle, allowing potential attackers a longer dwell time.  

This blog is a summary of the SOCwise Conversation on January 25th 2020.  Watch for the next one! 

For more information on the Sunburst attack, please visit our other resources on the subject: 

Blogs:

McAfee Knowledge-base Article (Product Coverage)

McAfee Knowledge-base Article (Insights Visibility)

 

The post 6 Best Practices for SecOps in the Wake of the Sunburst Threat Campaign appeared first on McAfee Blogs.

XDR – Please Explain?

By Rodman Ramezanian

SIEM, we need to talk! 

Albert Einstein once said, We cannot solve our problems with the same thinking we used when we created them. 

Security vendors have spent the last two decades providing more of the same orchestration, detection, and response capabilities, while promising different results. And as the old adage goes, doing the same thing over and over again whilst expecting different results is? Ill let you fill in the blank yourself.   

Figure 1: The Impact of XDR in the Modern SOC: Biggest SIEM challenges – ESG Research 2020

SIEM! SOAR! Next Generation SIEM! The names changed, while the same fundamental challenges remained: they all required heavy lifting and ongoing manual maintenance. As noted by ESG Research, SIEM – being a baseline capability within SOC environments  continues to present challenges to organisations by being either too costly, exceedingly resource intensive, requiring far too much expertise, and various other concerns. A common example of this is how SOC teams still must create manual correlation rules to find the bad connections between logs from different products, applications and networksToo often, these rules flooded analysts with information and false alerts and render the product too noisy to effective. 

The expanding attack surface, which now spans Web, Cloud, Data, Network and morehas also added a layer of complexity. The security industry cannot only rely on its customers analysts to properly configure a security solution with such a wide scope. Implementing only the correct configurations, fine-tuning hundreds of custom log parsers and interpreters, defining very specific correlation rules, developing necessary remediation workflows, and so much more  its all a bit too much. 

Detections now bubble up from many siloed tools, too, including Intrusion Prevention System(IPS) for network protection, Endpoint Protection Platforms (EPP) deployed across managed systems, and Cloud Application Security Broker (CASB) solutions for your SaaS applications. Correlating those detections to paint a complete picture is now an even bigger challenge. 

There is also no R in SIEM – that is, there is no inherent response built into SIEM. You can almost liken it to a fire alarm that isnt connected to the sprinklers.  

SIEMs have been the foundation of security operations for decades, and that should be acknowledged. Thankfully, theyre now being used more appropriately, i.e. for logging, aggregation, and archiving 

Now, Endpoint Detection and Response (EDR) solutions are absolutely on the right track  enabling analysts to sharpen their skills through guided investigations and streamline remediation efforts – but it ultimately suffers from a network blind spot. Similarly, network security solutions dont offer the necessary telemetry and visibility across your endpoint assets.

Considering the alternatives

Of Gartners Top 9 Security and Risk Trends for 2020Extended detection and response capabilities emerge to improve accuracy and productivity ranked as their #1 trend. They notedExtended detection and response (XDR) solutions are emerging that automatically collect and correlate data from multiple security products to improve threat detection and provide an incident response capabilityThe primary goals of an XDR solution are to increase detection accuracy and improve security operations efficiency and productivity. 

That sounds awfully similar to SIEM, so how is an XDR any different from all the previous security orchestration, detection, and response solutions? 

The answer is: An XDR is a converged platform leveraging a common ontology and unifying language. An effective XDR must bring together numerous heterogeneous signals, and return a homogenous visual and analytical representation.. XDR must clearly show the potential security correlations (or in other words, attack stories) that the SOC should focus on. Such a solution would de-duplicate information on one hand, but would emphasize the truly high-risk attacks, while filtering out the mountains of noise. The desired outcome would not require exceeding amounts of manual work; allowing SOC analysts to stop serving as an army of translators and focus on the real work  leading investigations and mitigating attacks. This normalized presentation of data would be aware of context and content, be advanced technologically, but simple for analysts to understand and act upon. 

SIEMs are data-driven, meaning they need data definitions, custom parsing rules and pre-baked content packs to retrospectively provide context. In contrast, XDR is hypothesis driven, harnessing the power of Machine Learning and Artificial Intelligence engines to analyse high-fidelity threat data from a multitude of sources across the environment to support specific lines of investigation mapped to the MITRE ATT&CK framework.  

The MITRE ATT&CK framework is effective at highlighting how bad guys do what they do, and how they do it. While traditional prevention measures are great at spot it and stop it protections, MITRE ATT&CK demonstrates there are many steps taking place in the attack lifecycle that arent obvious. These actions dont trigger sufficient alerting to generate the confidence required to support a reaction.  

XDR isnt a single product. Rather, it refers to an assembly of multiple security products (and services) that comprise a unified platform. AnXDR approach will shiftprocesses and likely merge and encouragetighter coordination between different functions likeSOC analysts, hunters, incident respondersand ITadministrators. 

The ideal XDR solution must provide enhanced detection and response capabilities across endpoints, networks, and cloud infrastructures. It needs to prioritise and predict threats that matter BEFORE the attack and prescribe necessary countermeasures allowing the organisation to proactively harden their environment. 

Figure 2: Where current XDR approaches are failing

McAfees MVISION XDR solution does just that, by empowering the SOC to do more with unified visibility and control across endpoints, network, and cloud. McAfee XDR orchestrates both McAfee and non-McAfee security assets to deliver actionable cyber threat management and support both guided and automated investigations. 

What if you could find out if you’re in the crosshairs of a top threat campaign, by using global telemetry from over 1 billion sensors that automatically tracks new campaigns according to geography and industry vertical? Wouldn’t that beinsightful? 

“Many firms want to be more proactive but do not have the resources or talent to execute. McAfee can help bridge this gap by offering organisations a global outlook across the entire threat landscape with local context to respond appropriately. In this way, McAfee can support a CISO-level strategy that combines risk and threat operations.” 

– Jon Oltsik, ESG Senior Principal Analyst and Fellow
 

But, hang on… Is this all just another ‘platform’ play 

Take a moment to consider how platform offerings have evolved over the years. Initially designed to compensate for the heterogeneity and volume of internal data sources and external threat intelligence feeds, the core objective has predominantly been to manifest data centrally from across a range of vectors in order to streamline security operations efforts. We then saw the introduction of case management capabilities. 

Over the past decade, the security industry proposed solving many of  the challenges presented in SOC contexts through integrations. You would buy products from a few different vendorswho promised it would all work together through API integration, and basically give you some form of pseudo-XDR outcomes were exploring here.  

Frankly, there are significant limitations in that approach. There is no data persistence; you basically make requests to the lowest API denominator on a one-to-one basis. The information sharing model was one-way question and answer leveraging a scheduled push-pull methodology. The other big issue was the inability to pull information in whatever form  you were limited to the API available between the participating parties, with the result ultimately only as good as the dumbest API.  

And what about the lack of any shared ontology, meaning little to no common objects or attributes? There were no shared components, such as UI/UX, incident management, logging, dashboards, policy definitions, user authentication, etc. 

What’s desperately been needed is an open underlying platform – essentially like a universal API gateway scaled across the cloud that leverages messaging fabrics like DXL that facilitate easy bi-lateral exchange between many security functions – where vendors and partner technologies create tight integrations and synergies to support specific use cases benefitting SOC ecosystems. 

Is XDR, then, a solution or product to be procured? Or just a security strategy to be adopted?Potentially, its both.Some vendors are releasing XDR solutions that complement their portfolio strengths, and others are just flaunting XDR-like capabilities.  

 Closing Thoughts

SIEMs still deliver specific outcomes to organisations and SOCswhich cannot be replaced by XDR. In fact, with XDR, a SIEM can be even more valuable. 

For most organisations, XDR will be a journey, not a destination. Their ability to become more effective through XDR will depend on their maturity and readiness toembrace all the requiredprocesses.In terms of cybersecurity maturity, if youd rate your organisation at a medium to high level, the question becomes how and when. 

Most organisations using an Endpoint Detection and Response(EDR) solution are likely quite readyto embrace XDRscapabilities. They are already investigating and resolving endpoint threats and theyre ready to expand this effort to understand how their adversaries move across their infrastructure, too. 

If youd like to know more about how McAfee addresses these challenges with MVISION XDR, feel free to reach out! 

The post XDR – Please Explain? appeared first on McAfee Blogs.

Are You Ready for XDR?

By Kathy Trahan

What is your organizations readiness for the emerging eXtended Detection Response (XDR) technology? McAfee just released the first iteration of this technologyMVISION XDR. As XDR capabilities become available, organizations need to think through how to embrace the new security operations technology destined to empower detection and response capabilities. XDR is a journey for people and organizations. 

The cool thing about McAfee’s offering is the XDR capabilities is built on the McAfee platform of MVISION EDR, MVISION Insights and is extended to other McAfee products and third-party offerings.   This means — as a McAfee customer  your XDR journey has already begun. 

The core value prop behind XDR is to empower the SecOps function which is still heavily burdened with limited staff and resources while the threat landscape roars. This cry is not new. As duly noted in the book,  Ten Strategies of World-class Cybersecurity Operations Center, written quite a few moons ago:  “With the right tools, one good analyst can do the job of 100 mediocre ones.” XDR is the right tool. 

 SecOps empowerment means impacting and changing people and process in a positive manner resulting in better security outcomesOrganizations must consider and prepare for this helpful shift. Here are three key considerations organizations need to be aware of and ready for: 

The Wonder of Harmonizing Security Controls and Data Across all Vectors  

A baseline requirement for XDR is to unify and aggregate security controls and data to elevate situation awareness.  Now consider what does this mean to certain siloed functions like endpoint, network and web.  Let’s say you are analyst who typically pulls telemetry from separate control points (endpoint, network, web) moving from each tool with a login, to another tool with another login and so on. Or maybe you only have access to the endpoint tool. To gain insight into the network you emailed the network folks with artifacts you are seeing on the endpoint and ask if these is anything similar, they have seen on the edge and what they make of it. Often there is a delayed response from network folks given their priorities. And you call the web folks for their input on what they are seeing.  Enter XDR.  What if this information and insights was automatically given to you on a unified dashboard where situation awareness analysis has already begun.  This reduces the manual pivoting of copy and pasting, emailing, and phone calls.  It removes the multiple data sets to manage and the cognitive strain to make sense of it. The collection, triaging, and initial investigative analysis are automated and streamlined. This empowers the analysts to get to a quicker validation and assessment. The skilled analyst will also use  experience and human intuition to respond to the adversary, but the initial triaging, investigation, and analysis has already been doneIn addition, XDR fosters the critical collaboration between the network operations and security operations since adversary movement is erratic across the entire infrastructure  

Actionable Intelligence Fosters Proactive SecOps Efforts (MVISION XDR note-worthy distinction) 

Imagine if your SecOps gained high priority threat intelligence before the adversary hits and enters your environment. What does it mean to your daily SecOps processes and policy?  It removes a significant amount to of hunting, triaging and investigation cycles. It simply prioritizes and accelerates the investigation.  It answers the questions that matter. Any associated campaign is bubbled up immediately.  You are getting over a hundred high alerts, but one is related to a threat campaign that is likely to hit.  It removes the guess work and prioritizes SecOps efforts. It assesses your environment and the likely impact—what is vulnerable. More importantly it suggests counter measures you can take. It moves you from swimming in context to action in minutes.   

This brings the SecOps to a decision moment faster—do they have the authority to respond? Are they a participant in prevention efforts?  Note this topic is Strategy Three in the Ten Strategies of World-class Cybersecurity Operations Center where it is highly encouraged to empower SecOps to make and/or participate in such decisions.  Policies for response decisions and actions vary by organizations, the takeaway here is decision moments come faster and more often with significant research and credible context from MVISION XDR. 

Enjoy the Dance Between Security and IT  

XDR is an open, integrated platform.  So, what does it mean to people and process if all the pieces are integrated and security functions coordinate efforts? It depends on the pieces that are connected. For example, if SecOps can place a recommendation to update certain systems on the IT service system automatically it removes the necessity to login into the IT system and place a request or in some cases call or email IT (eliminating time-consuming step.)  There is a heightened need for whatif scenario policies driven by Secure Orchestration Automation Response (SOAR) solutions.  These policies are typically reflected in a manual playbook or SOAR playbook.  

Let’s consider an example, when an email phishing alert is offered the SOAR automatically (by policy/play required) compares the alert against others to see if there are commonalties worth noting. If so, the common artifacts are assigned to one analyst versus distributing separate alerts to many analysts. This streamlines the investigation and response to be more effective and less consuming. There are many more examples, but the point is when you coordinate security functions organization must think through how they want each function to act under specific circumstances—what is your policy for these circumstances. 

These are just a few areas to consider when you embrace XDR. I hope this initial discussion started you thinking about what to consider when embracing XDR. We have an online SOC audit where you can assess your SOC maturity and plan where you want to go.  Join us for a webinar on XDR readiness where experts will examine how to prepare to optimize XDR capabilities.  We also have a SOC best practices series, SOCwise that offers regular advice and tips for your SOC efforts!   

 

 

The post Are You Ready for XDR? appeared first on McAfee Blogs.

Verisign Q4 2020 Domain Name Industry Brief: 366.3 Million Domain Name Registrations in the Fourth Quarter of 2020

By Verisign

Today, we released the latest issue of the Domain Name Industry Brief, which shows that the fourth quarter of 2020 closed with 366.3 million domain name registrations across all top-level domains (TLDs), a decrease of 4.4 million domain name registrations, or 1.2 percent, compared to the third quarter of 2020.1,2 Domain name registrations have grown by 4.0 million, or 1.1 percent, year over year.1,2

366.3 MILLION DOMAIN NAME REGISTRATIONS IN THE FOURTH QUARTER OF 2020

Check out the latest issue of the Domain Name Industry Brief to see domain name stats from the fourth quarter of 2020, including:

This quarter’s Domain Name Industry Brief also includes a closer look at encryption and what new DNS capabilities may be possible with a “minimize at the root and top-level domain, encrypt when needed elsewhere” approach to DNS encryption.

To see past issues of the Domain Name Industry Brief, please visit Verisign.com/DNIBArchives.


1. The figure(s) includes domain names in the .tk ccTLD. .tk is a ccTLD that provides free domain names to individuals and businesses. Revenue is generated by monetizing expired domain names. Domain names no longer in use by the registrant or expired are taken back by the registry and the residual traffic is sold to advertising networks. As such, there are no deleted .tk domain names. https://www.businesswire.com/news/home/20131216006048/en/Freenom-Closes-3M-Series-Funding#.UxeUGNJDv9s.

2. The generic top-level domain (gTLD), new gTLD (ngTLD) and ccTLD data cited in the brief: (i) includes ccTLD Internationalized Domain Names (IDNs), (ii) is an estimate as of the time this brief was developed and (iii) is subject to change as more complete data is received. Some numbers in the brief may reflect standard rounding.

The post Verisign Q4 2020 Domain Name Industry Brief: 366.3 Million Domain Name Registrations in the Fourth Quarter of 2020 appeared first on Verisign Blog.

Why MITRE ATT&CK Matters?

By Carlos Diaz

MITRE ATT&CK enterprise is a “knowledge base of adversarial techniques”.   In a Security Operations Center (SOC) this resource is serving as a progressive framework for practitioners to make sense of the behaviors (techniques) leading to system intrusions on enterprise networks. This resource is centered at how SOC practitioners of all levels can craft purposeful defense strategies to assess the efficacy of their security investments against that knowledge base.

To enable practitioners in operationalizing these strategies, the knowledge base provides the “why and the what with comprehensive documentation that includes the descriptions and relational mappings of the behaviors observed by the execution of malware, or even when those weapons were used by known adversaries in their targeting of different victims as reported by security vendors. It goes a step further by introducing the “how” in the form of adversary emulation plans which streamline both the design of threat-models and the necessary technical resources to test those models – i.e., emulating the behavior of the adversary

For scenarios where SOCs may not have the capacity to do this testing themselves, the MITRE Corporation conducts annual evaluations of security vendors and their products against a carefully crafted adversary emulation plan, and it publishes the results for public consumption.  The evaluations can help SOC teams assess both strategy concerns and tactical effectiveness for their defensive needs as they explore market solutions.

This approach is transformative for cyber security, it provides an effective way to evolve from constraints of being solely dependent on IOC-centric or signature-driven defense models to now having a behavior-driven capability for SOCs to tailor their strategic objectives into realistic security outcomes measured through defensive efficacy goals. With a behavior-driven paradigm, the emphasis is on the value of visibility surrounding the events of a detection or prevention action taken by a security sensor – this effectively places context as the essential resource a defender must have available to pursue actionable outcomes.

Cool! So what is this “efficacy” thing all about?

I believe that to achieve meaningful security outcomes our products (defenses) must demonstrate how effective they are (efficacy) at enabling or preserving the security mission we are pursuing in our organizations. For example, to view efficacy in a SOC, let’s see it as a foundation of 5 dimensions:

Detection Gives SOC Analysts higher event actionability and alert handling efficiencies with a focus on most prevalent adversarial behaviors – i.e., let’s tackle the alert-fatigue constraint!
Prevention Gives SOC Leaders/Sponsors confidence to show risk reduction with minimized impact/severity from incidents with credible concerns – e.g., ransomware or destructive threats.
Response Gives SOC Responders a capacity to shorten the time between detection and activating the relevant response actions – i.e., knowing when and how to start containing, mitigating or eradicating.
Investigative Gives SOC Managers a capability to improve quality and speed of investigations by correlating low signal clues for TIER 1 staff and streamlining escalation processes to limited but advanced resources.
Hunting Enables SOC Hunters a capacity to rewind-the-clock as much as possible and expand the discovery across environments for high value indicators stemming from anomalous security events.

 

So how does “efficacy” relate to my SOC?

Efficacy at the Security and Technical Leadership levels confirms how the portfolio investments are expected to yield the defensive posture of our security strategy, for example, compare your investments today to any of the following:

Strategy (Investment)

Portfolio Focus

Efficacy Goals

 

Balanced Security

Ability to:
  • Focus on prevalent behaviors
  • Confidently prevent attack chains with relevant impact/severity
  • Provide alert actionability
  • Increase flexibility in response plans based on alert type and impact situation

Caveats:

  • Needs efficacy testing program with adversary emulation plans
 

Detection Focus

Ability to:
  • Focus on prevalent behaviors
  • Provide alert actionability
  • Proactively discover indicators with hunting

Caveats:

  • Requires humans
  • Minimal prevention maturity
  • Requires solid incident response expertise
  • Hard to scale to proactive phases due to prevention maturity

Prevention Focus

Ability to:
  • Confidently prevent attack chains with relevant impact/severity
  • Lean incident response plans
  • Provide alert actionability and Lean monitoring plans

Caveats:

  • Hard to implement across the business without disrupting user experience and productivity
  • Typically for regulated or low tolerance network zones like PCI systems
  • Needs high TCO for the management of prevention products

 Response Focus

Ability to:
  • Respond effectively to different scenarios identified by products or reported to the SOC

 Caveats:

  • Always reacting
  • Requires humans
  • Hard to retain work staff
  • Unable to spot prevalent behaviors
  • Underdeveloped detection
  • Underdeveloped prevention

 

MITRE ATT&CK matters as it introduces the practical sense-making SOC professionals need so they can discern attack chains versus security events through visibility of the most prevalent behaviors.

Consequently, it allows practitioners to overcome crucial limitations from the reliance on indicator-driven defense models that skew realistic efficacy goals, thereby maximizing the value of a security portfolio investment.

The post Why MITRE ATT&CK Matters? appeared first on McAfee Blogs.

How 2020 Helped Parents Understand Their Kids’ Digital Lives

By Cyber Safety Ambassador: Alex Merton-McCann
Understanding Kids Digital Lives

How 2020 Helped Parents Understand Their Kids’ Digital Lives

Over the last 12 months, technology has featured in our lives in a way I don’t think any of us would have predicted. Whether you were in lockdown, choosing to stay home to stay well or quite simply, out of other option – technology saved the day. It helped us work and learn from home, stay connected with friends and family, entertain ourselves, shop and essentially, live our lives.

For many parents, this was a real ‘aha’ moment. A moment when technology went from being an annoying distraction to incredibly critical to the functioning of our day to day lives. Of course, many of us had always considered technology to be useful to help us order groceries and check Facebook but to experience first-hand that technology meant life could go on during a worldwide pandemic was a real game changer.

2020 Forced Many Parents to Truly Get Involved in Their Kids Online World

Whether it was downloading video calling apps like Zoom or Facetime, setting up a Twitter account to get updates from the Health Department, using Google Doc to work collaboratively or experiencing what online gaming really is via a few sessions on the Xbox, 2020 means many parents had to get up to date, real fast! And you know what – that’s a good thing! I’ve had so many parents remark to me that they know finally understand why their kids are so enamoured with technology. There really is nothing like walking in someone’s shoes to experience their world!

I’m a big believer in parents taking the time to truly understand the world in which their kids exist. For years, I’ve advised parents to download and use the apps and games their kids play so they can understand the attraction and complexity of their kids’ digital life. Well, it may have taken a global pandemic, but I am delighted to report that, anecdotally at this stage, more parents are now embracing their kids’ online world.

Don’t Forget About Online Safety!

When we first become enamoured with something, we often enter the ‘honeymoon’ phase. As a married woman of 28 years, this was many years ago for me!! The honeymoon phase is when everything is wonderful and rosy, and negatives are not always considered. And our relationship with technology can be much the same. And I’ve been there – there’s nothing quite so wonderful as discovering a new app or piece of software and almost being joyous at just how transformational it could be for your life. And this often means we gloss over or even ignore the risks because we are in love!!!

Here’s What You Need to Know

So, as Cybermum, I’m here to cheer you on and pat you on the back for embracing and using new apps and software. Yes, I’m very proud! But I also want to share with you just a few steps that you need to take to ensure you are not taking on any unnecessary risks with your new favourite app. Here are my top tips:

1. Passwords
Every app, online account or piece of software needs it own individual password. Yes, I know that it is a real pain, but it is one of the most important things you will do to protect yourself online. I’m a big fan of password managers that not only generate the most incredibly complex passwords for each of your accounts but remember them for you. McAfee’s password manager, True Key, is a free option which has completely helped me manage my 80 plus collection of passwords!! Very grateful!

2. Software Updates
The main purpose of a software update is to protect the user from security threats. Yes, you may also get some new features and possibly have a glitch or 2 removed but it is all about the user’s safety. So, if you don’t update your software, it’s a little like leaving windows open when you go out. And the longer you leave between updates – the more windows you leave open!

So, automate these updates if you can or schedule them in your diary. Why not earmark the first day of the month to check and see what you need to download to protect yourself? And don’t forget about your operating system on your phone or laptop too!

3. Be Wi-Fi Wary
Dodgy wi-fi is where so many people come unstuck. Regardless of what app or software you are using, anything you share via unsecured wi-fi could be intercepted by a hacker. So, if you find yourself using wi-fi regularly, you might want to consider a Virtual Private Network or VPN. A VPN creates an encrypted tunnel so anything you share via Wi-Fi cannot be intercepted. Genius, really! Check out McAfee’s Safe Connect for peace of mind.

So, please keep going! Keep exploring new ways technology can work for you in our new COVID world. But remember to take a break too. There is no doubt that technology has saved the day and has ensure we can all still function but there must be a balance too. So, walk the dog, play a board game or having a cuppa outside. Remember you manage the technology; it doesn’t manage you!

Till next time

Stay safe online.

Alex xx

 

To stay updated on all things McAfee and on top of the latest consumer and mobile security threats, follow @McAfee_Home  on Twitter, subscribe to our email, listen to our podcast Hackable?, and ‘Like’ us on Facebook.

The post How 2020 Helped Parents Understand Their Kids’ Digital Lives appeared first on McAfee Blogs.

Keep Remote Classes Safe and in Session: What You Need to Know About Netop Vision Pro

By Judith Bitterli

Keep Remote Classes Safe and in Session: What You Need to Know About Netop Vision Pro

Distance and hybrid learning environments are now the norm, and it remains to be seen if or when this will change. To adapt, many schools have adopted new software to support remote classroom management.

One such platform is Netop Vision Pro, a student monitoring system that helps teachers facilitate remote learning. The software allows teachers to perform tasks remotely on students’ computers, such as locking their devices, blocking web access, remotely controlling their desktops, running applications, and sharing documents. However, the McAfee Advanced Threat Research (ATR) team recently discovered multiple vulnerabilities with Netop Vision Pro that could be exploited by a hacker to gain full control over students’ computers.

Let’s dive into these vulnerabilities and unpack how you can help protect your students in the virtual classroom.

How We Identified Netop Vision Pro Vulnerabilities

Just like a school science project, our researchers created a simulation to test their hypothesis regarding the potential software bugs. The McAfee ATR team set up the Netop software to mimic a virtual classroom with four devices on a local network. Three devices were appointed as students, and one was designated as the teacher. During the setup, the team noticed that there were different permission levels between student profiles and teacher profiles. They decided to see what would happen if they targeted a student profile, since this would likely be the avenue a hacker would take since they could cause more damage. With their experiment set up, it was time for our researchers to get inside the mind of a cybercriminal.

While observing the virtual classroom, the ATR team discovered that all network traffic — including sensitive information like Windows credentials — was unencrypted with no option to turn encryption on during configuration. They also noticed that a student connecting to a classroom would unknowingly begin sending screenshots to the teacher.

Furthermore, the ATR team noticed that teachers would send students a network packet (a small segment of internet data) prompting them to connect to the classroom. With this information, the team was able to disguise themselves as a teacher by modifying their code. From there, they explored how a hacker could take advantage of the compromised connection.

Teacher viewing all student machines via screenshots
Teacher viewing all student machines via screenshots

 

The McAfee ATR team turned their attention to Netop Vision Pro’s chat function, which allows teachers to send messages or files to a student’s computer, as well as delete files. Any files sent by a teacher are stored in a “work directory,” which the student can open from an instant message (IM) window. Based on the team’s discovery that a hacker could disguise themselves as a teacher, it became clear that hackers could also use this functionality to overwrite existing files or entice an unsuspecting student to click on a malicious file.

The Risks of Netop Vision Pro Vulnerabilities

Of course, remote learning software is necessary right now to ensure that our children stay on top of their studies. However, it’s important that we educate ourselves on these platforms to help protect our students’ privacy. While the Netop Vision Pro student screen shares may seem like a viable option for holding students accountable in the virtual classroom, it could allow a hacker to spy on the contents of the students’ devices. While the functionality allows teachers to monitor their students in real-time, it also puts their privacy at risk.

If a hacker is able to impersonate a teacher with modified code, they could also send malicious files that contain malware or other phishing links to a student’s computer. Netop Vision Pro student profiles also broadcast their presence on the network every few seconds, allowing an attacker to scale their attacks to an entire school system.

Finally, if a hacker is able to gain full control over all target systems using the vulnerable software, they can equally bridge the gap from a virtual attack to the physical environment. The hacker could enable webcams and microphones on the target system, allowing them to physically observe your child and their surrounding environment.

Our Response to the Identified Vulnerabilities

Our researchers reported all vulnerabilities discovered to Netop and heard back from the company shortly after. In the latest software release 9.7.2, Netop has addressed many of the issues the McAfee ATR team discovered. Students can no longer overwrite system files, which could be used take control of the student machine. Additionally, Windows credentials are now encrypted when being sent over the network. Netop also told McAfee that they have plans to implement full network encryption in a future update, which will prevent an attacker from easily monitoring student’s screens and prevent them from being able to emulate a teacher.

While Netop works to remedy these issues internally, there are some critical steps parents can take to help protect and empower your children in the virtual classroom. Check out the following tips to bring you and your family peace of mind while using third-party education platforms:

1. Use a dedicated device for remote learning software

If your student is required to use Netop Vision Pro or other third-party software while distance learning, have them use this technology on a device strictly used for educational purposes. If the software contains any bugs, this prevents other important accounts used for online banking, emails, remote work, etc. from becoming vulnerable to the software risks.

2. Use comprehensive security software

It’s important to keep in mind that Netop Vision Pro was never intended to be internet-facing or taken off a school network. Let’s look at this scenario through the eyes of a hacker: they will likely try to take advantage of these vulnerabilities by delivering a malicious payload (parts of cyberattacks that can cause harm) or phishing attempts. To protect your students from these threats, utilize a comprehensive security solution like McAfee® Total Protection, which helps defend your entire family from the latest threats and malware while providing safe web browsing.

3. Keep an open line of communication with your student’s school

Educators want to keep their students’ best interest and safety in mind, so talk to your child’s teacher or principal if you ever have concerns regarding the software they are using for distance learning. If your student is required to use Netop, ensure that the teacher or principal is aware of the vulnerabilities listed above so they can be sure to administer the necessary software updates to keep your child and their classmates safe.

4. Use a webcam cover

A simple yet affective way to prevent hackers from spying on you and your family is to use a webcam cover for when class is not in session. Instruct your student to place a cover over their camera when they are not using it to bring you and your student greater peace of mind.

Stay Updated

To stay updated on all things McAfee and on top of the latest consumer and mobile security threats, follow @McAfee_Home  on Twitter, subscribe to our email, listen to our podcast Hackable?, and ‘Like’ us on Facebook.

The post Keep Remote Classes Safe and in Session: What You Need to Know About Netop Vision Pro appeared first on McAfee Blogs.

How to Stay Connected and Protected in a Remote Work Environment

By Jean Treadwell
work from home securely

How to Stay Connected and Protected in a Remote Work Environment  

Advancements in cloud solutions and collaboration tools in recent years, coupled with the necessity of going remote due to the pandemic, have empowered today’s workforce to choose where they want to work. While the ability to work from anywhere—home, the library, coffee shops or even the beach– gives employees increased flexibility, the shift from the traditional office setting has exposed security and logistical concerns. Remote workers often access sensitive information from unsecured devices and networks, which can result in compromised data and failed privacy compliance.  It’s essential for remote workers to practice online safety to minimize the cybersecurity risks to their organizations.

It’s undeniable that the freedom to work from anywhere is an employee perk that organizations must adapt to. Here’s a breakdown of some of the risks of working remotely and what companies can do keep their sensitive information secure, even when outside the safety of their four walls:

Know the Risks of Online Connectivity and Collaboration

Office closures and working-from-home mandates due to COVID-19 permanently changed the way we look at workplace connectivity.  A recent Fenwick poll among HR, privacy, and security professionals across industries noted that approximately 90% of employees now handle intellectual property, confidential, and personal information on their in-home Wi-Fi as opposed to in-office networks. Additionally, many are accessing this information on personal and mobile devices that often do not have the same protections as company-owned devices. The elevated number of unprotected devices connected to unsecured networks creates weak areas in a company’s infrastructure, making it harder to protect against hackers.

One technology your organization should be especially diligent about is video conferencing software. Hackers can infiltrate video conferencing software to eavesdrop on private discussions and steal vital information. Many disrupt video calls via brute force, where they scan a list of possible meeting IDs to try and connect to a meeting. Others seek more complex infiltration methods through vulnerabilities in the actual software. Up until recently, Agora’s video conferencing software exhibited these same vulnerabilities.

Hackers will usually try to gain access to these network vulnerabilities by targeting unsuspecting employees through phishing scams which can lead to even greater consequences if they manage to insert malware or hold your data for ransom.  Without proper training on how to avoid these threats, many employees wouldn’t know how to handle the impact should they become the target.

Take Greater Care When Working Remotely

Whether you’re connecting from home or from another remote location, it’s critical to practice the same level of care as you would in the office. Here are some quick and essential security safety habits every remote employee should practice.

Don’t Go Phishing

Phishing is one of the most common methods hackers will deploy to target unsuspecting employees to access sensitive data. In fact, over 63% of Canadian IT executives in a recent poll indicated that ransomware and phishing were the top security concerns for their organizations. Here are some ways you can spot a phishing scam:

  • If you receive an email, text, or phone call prompting you to take immediate action and log in to an account, make a payment, confirm personal information, click on a suspicious link
  • If the link doesn’t match the actual text in an email (hover over it with your cursor to check)
  • The message is poorly written or the company logo looks odd
  • The name of the sender doesn’t match the email domain or the email domain contains errors

Adhere to company policy and standards

Ensure you understand your company’s policies and confidentiality agreements when it comes to sharing files, storing documents, and other online communications. Use company-approved cloud applications that follow strict security standards to avoid inadvertently exposing sensitive company information through unsecured means. This measure can also apply when using video conferencing software. Limit the amount of sensitive information shared via video conferencing platforms and through messaging features just in case uninvited hackers are eavesdropping.

Separate personal and business devices 

We may have brought work home with us, but nonetheless, we must strive to maintain a work/life balance and set boundaries between our personal and work life. Setting these boundaries makes it easier to separate the technology we use in our life as well. Avoid sharing your company’s devices with family members who are not aware of the best security practices, especially children. Also, keep personal accounts separate from company accounts to prevent sharing information through personal channels.

Leverage security software tools

Given the flexibility to truly work from anywhere, ensure you are connected to a secure network when not connected to your home’s password-protected Wi-Fi. When connecting to an unfamiliar network, always use a VPN to encrypt data and safely share files across the internet, preferably the one your company uses, or check with your IT resource. Take preemptive measures to mitigate exposure by installing antivirus software and firewall protection to scan files and systems and protect against harmful viruses regularly.

Make Security a Priority When Working Remotely 

While the COVID pandemic has sparked a remote work movement that has changed the way we look at the conventional workplace—introducing greater flexibility and the opportunity to work from anywhere—remote work is well on its way to becoming a permanent fixture in the lives of many. However, the number of employees dispersed across cities and even countries have made it more difficult to secure endpoint devices such as laptops and mobile devices. Moreover, the risk posed by unsecured networks only increases the vulnerabilities of remote workplaces. As more workplaces embrace the benefits of a fully remote workforce, we will need to give more thought to how we can facilitate a secure workplace that is collaborative yet protected. By increasing awareness of potential cyber threats and enhancing security standards for devices and home networks, we can begin to create a safer and more efficient workplace.

To stay updated on all things McAfee and on top of the latest consumer and mobile security threats, follow @McAfee_Home on Twitter, subscribe to our email, listen to our podcast Hackable?, and ‘Like’ us on Facebook.

 

 

 

The post How to Stay Connected and Protected in a Remote Work Environment appeared first on McAfee Blogs.

Check up on Your Virtual Safety: Tips for Telehealth Protection

By Jean Treadwell
Telemedicine visit

Check up on Your Virtual Safety: Tips for Telehealth Protection

In a poll conducted by the Canadian Medical Association, nearly half of Canadians have used telehealth services since the start of the pandemic. Additionally, in a recent McAfee study, we found that 21% of Canadians have used the internet for a doctor visit in 2020, and 28% said that such online visits will become a part of their routine moving forward Telehealth, or virtual care. This includes clinical services delivered remotely via electronic communications, such as videoconferencing, mobile apps and remote patient monitoring technology. Many of us have readily accepted these medical services out of necessity, as COVID have limited in-person hospital visits.

Hackers are taking advantage of the rise in virtual health services and exploiting their vulnerabilities to steal sensitive medical records. These vulnerabilities are the result of bigger issues stemming from obscure patient health information regulations and health care system budgetary constraints.

Understanding the risks associated with telehealth is the first step to securing your online safety during your virtual doctor’s visits.

Why Cybercriminals Target Health Care

At the onset of the pandemic, the number of reported Canadian cyberattacks jumped 50% from Q4 2019 to Q1 2020. Health care is one of the most targeted industries for cyberattacks. One attack even compromised the organization that manages Ontario’s medical records. Health care is such a highly targeted industry because it holds a wealth of information that fetches a high price on the dark web. Experts say medical records are more valuable than credit card details due to the amount of vital information stored in them, such as birth dates and patient ID numbers. Hackers can then hold this information for ransom or use it to steal your identity. Further, cybercriminals see health care institutions as easy targets. Canadian health care IT departments have insufficient budgets and are ill-prepared to handle the rising threats.

Canada also does not have federal guidelines governing virtual care and patient health information. Rather, health care providers and virtual care platforms are limited to the broad guidelines outlined by the Personal Information Protection and Electronic Documents Act (PIPEDA). As these are not digital security specific purpose defined guidelines and requirements, it makes it more difficult for health care providers and telehealth companies to protect patient data.

Telehealth Risks

Telehealth makes care accessible to everyone; unfortunately, if you’re not careful, telehealth also opens the door for hackers. Hackers can infiltrate the technology used for online doctor’s appointments, because video conferencing technologies have several security flaws. From there, hackers can disrupt calls, eavesdrop and steal your private health information.

The advent of telehealth services has also prompted an increase in emails. Since patients may be expecting emails from their doctor, they may let their guard down and fall victim to phishers posing as a health care organization.

Take Control of Your Health Privacy

Prepare for your next virtual doctor’s appointment with these best practices to secure your virtual safety.

Ask the right questions

Before heading into your next telehealth appointment, ask your health care provider the right questions to online understand what risks you may face. Ascertaining this information will help you understand what actions you need to take to mitigate the risk on your end, like staying alert for eavesdroppers or finding alternative ways to confirm personal information. Here are some questions you can ask:

  • “Do you record your sessions?”
  • “Do you share information with third parties?”
  • “How is my data being used?”
  • “What security measures does your telehealth platform implement? Does it use the highest encryption levels or employ multi-factor authentication?”

Beware of phishing

Phishing is a common tactic hackers use to access private health information and trick users into downloading malware. Beware of seemingly official emails under the guise of your health care provider asking for payment information or prompting you to take immediate action. If the email logo doesn’t look right, the message is poorly written, or the URL displayed doesn’t match the one that’s linked, then it’s likely a phishing scam.

Contact your health care provider before verifying sensitive information online, such as payment details or document transfer methods, to avoid falling victim to phishing. We recommend logging into your healthcare provider’s official website or app to confirm pertinent healthcare information as well. If you accidentally reply to a phishing email, perform a full malware scan on your device to ensure your private information remains secure.

Keep medical apps up to date

It’s important to keep telehealth applications up to date to benefit from the latest bug fixes and security patches. This includes apps belonging to your IoT devices, such as glucose monitors, blood pressure monitors or other network-enabled diagnostic devices. These devices represent more entry points that hackers can infiltrate, making it especially critical to keep them up to date and close any security loopholes.

Elevate your authentication methods

Get creative with your telehealth portal password, or better yet, use a security solution that includes a password management system. McAfee Total Protection includes a robust password management system that creates and saves strong passwords across all your accounts in one centralized location.

Ensure you’re using a telehealth platform that leverages multi-factor authentication, so even if a hacker were to acquire your password, there’s an added layer of security they won’t be able to bypass.

Defend against prying eyes by using a VPN

It’s always best to use a virtual private network (VPN) when conducting activities online, and medical visits are no exception. Using a VPN like McAfee Safe Connect VPN will ensure your data is encrypted and your private health information stays between you and your doctors. A VPN is especially important if you’re connecting from a network other than your password-protected home Wi-Fi.

Take Care of Your Physical and Virtual Health

Medical services are just one of many activities that have turned virtual due to the pandemic. Keep in mind these new virtual outlets come with elevated risks. Hackers are taking advantage of software vulnerabilities and taking victims unaware through social engineering tactics to steal sensitive personal information. Remember to secure your online health by taking a proactive stance against malicious threats so you can focus on your physical health during your telehealth visits.

Stay Updated

To stay updated on all things McAfee and on top of the latest consumer and mobile security threats, follow @McAfee_Home on Twitter, subscribe to our email, listen to our podcast Hackable?, and ‘Like’ us on Facebook.

 

 

The post Check up on Your Virtual Safety: Tips for Telehealth Protection appeared first on McAfee Blogs.

Is the Clubhouse App a Safe Place for Kids to Hangout?

By Toni Birdsong
internet safety for kids

Is the Clubhouse App a Safe Place for Kids to Hangout?

Most of us have fond summer memories of hanging out with friends in a secret clubhouse. However, this isn’t that. While the word clubhouse stirs up instant feelings of belonging to a group of friends, the digital Clubhouse app, we’re referencing is a meeting hub for users over 18. Currently, still in its beta phase, Clubhouse is by invitation only. This exclusivity is also what makes it somewhat irresistible for tweens and teens looking for a new place to meet with friends.

How it works

Clubhouse is an all-audio social network; kind of like a podcast meets a group phone call. Guests may drop in and even speak if they raise their hand are unmuted by the speaker. Speakers create “rooms” each with different topics and invite people to join in on that discussion.

The app found its wings as a fun place to connect during the pandemic. Mom groups, business roundtables, staff meetings, political groups, think tanks, and hobbyists flocked to connect on the app and still do. The topics are plentiful and there’s always a conversation happening that you can access with a click.

Clubhouse App

Age restrictions

Currently there aren’t any parental controls or privacy settings on Clubhouse. While the app states that there’s a minimum age requirement of 18, there isn’t an actual age-verification system. As with so many other apps, anyone under 18 can simply get an invite, fake their age, and either drop in on any of the conversations going on or start their own room.

Potential Risks

Mature content. Topics on Clubhouse cover a wide range of topics both mainstream and fringe. So, if an underage user fills out their profile information and interests, they will automatically get invitations to several daily discussions, which may or may not be age appropriate. They can also explore and join any kind of group.

Bullying. Clubhouse discussions are uncensored. Therefore, it’s possible that a heated discussion, biased comments, or bullying can take place.

Misinformation. If you walked through a crowded mall, you might overhear a dozen different accounts about a news event, a person, or a topic. The same holds true for Clubhouse where commentary is the currency. Therefore, misinformation is likely (as is common with any other app).

Accounts can’t be locked. Another privacy gap on Clubhouse is that accounts can’t be set to private and rooms/conversations will remain open by default unless the host makes it private, which means anyone can drop in.

The celebrity hook. Clubhouse has attracted celebrities and social media influencers to its halls who host discussions. This is a big draw for kids who want to hear real-life conversations and just get a bit closer to their favorite celebrity. Again, content can be unpredictable in these rooms and potentially risky for underage users.

Talk about the app

Why age restrictions matter. More and more, kids who ignore age restrictions on apps are wandering into trouble. Consider talking to your child about why age restrictions exist, the consequences if they are ignored, and some alternative apps that might be safer.

Why privacy matters. While Clubhouse has grown prolifically in a short time, which has caused some concern over data privacy. According to reports, Clubhouse asks users to share their contacts and has been accused of being “overly aggressive with its connection recommendations.” Also, it’s unclear how the app collects and leverages user data. As outlined by McAfee’s Advanced Threat Research Team last month, the security of user information and communication within Clubhouse has vulnerabilities that could be exploited. For these reasons, consider discussing the data “exchange” we often make when we jump on an exciting new app, why data matters, and why it’s important to understand what’s being collected and to use any and all privacy settings. According to its privacy policy, Clubhouse also “temporarily record the audio in a room when it is live.”

Why content matters. With so many images and ideas coming across our screens every day, holding fast to our content standards can be a challenge for families. Talk to kids about why age-appropriate conversations, topics, and friend groups matter online and what happens when you try to speed up that process. Discuss how content filters and parental controls work and consider them for your family.

The good news about Clubhouse (when it comes to young users) is that along with its rapid growth, the creators are reportedly responding to consumer safety demands and daily increasing in-app safety features for reporting harassment and abuse.

To stay updated on all things McAfee and on top of the latest consumer and mobile security threats, follow @McAfee_Home  on Twitter, subscribe to our email, listen to our podcast Hackable?, and ‘Like’ us on Facebook.

 

The post Is the Clubhouse App a Safe Place for Kids to Hangout? appeared first on McAfee Blogs.

SOCwise Series: A Tale of Two SOCs with Chris Crowley

By Ismael Valenzuela
coin miners

In a recent episode of McAfee’s SOCwise Series, guest security expert Chris Crowley revealed findings of his recent survey of security efforts within SOCs. His questions were designed to gain insight into all things SOC, including how SOCs can accomplish their full potential and how they assess their ability to keep up with security technology. 

Hosts Ismael Valenzuela and Michael Leland tapped into Chris’ security operations expertise as he told “A Tale of Two SOCs. 

“Chris has a tremendous experience in security operations,” Ismael said. “I always like people who have experience both in the offensive side and the defensive side. Think red, act blue, right? . . . but I think that’s very important for SOCs. Where does ‘A Tale of Two SOCs’ come from?”  

In reference to the Charles Dickens’ classic, Chris explained how survey responses fell into two categories: SOCs that had management support or those that did not. 

“It’s not just this idea of does management support us. It’s are we effectively aligned with the organization?” Chris said. And I think that is manifest in the perception of management support of not management support, right? So, I think when people working in a SOC have the sense that they’re doing good things for the organization, their perceptions is that the management is supporting them.” 

In this case, Chris explains “A Tale of Two SOCs” also relates to the compliance SOC versus the real security SOC. 

“A lot of it has to do with what are the goals when management set up to fund the SOC, right? Maybe the compliance SOC versus the SOC that’s focused on the security outcomes on defending, right?There are some organizations that are funding for basic compliance,” Chris said. [If the] law says we have to do this, we’re doing that. We’re not really going to invest in your training and your understanding and your comprehension. We’re not going to hire really great analysts. We’re just going to buy the tools that we need to buy. We’re going to buy some people to look at monitors and that’s kind of the end of it. 

One of the easiest and telling methods of assessing where an SOC sees itself in this tale is having conversations with staff. Chris recommends asking staff if they feel aligned with management and do they feel empowered? 

“If you feel like you’re being turned into a robot and you pick stuff from here and drop it over there, you’re probably in a place where management doesn’t really support you. Because they’re not using the human being’s capability of synthesis of information and that notion of driving consensus and making things work,” Chris said. “They’re looking more for people who are replaceable to put the bits in the bucket and move through.” 

Chris shared other survey takeaways including how SOCs gauge their value, metrics and tools. 

SOC INDICATORS AND PERCEIVED VALUE 

The survey included hypotheses designed to measure how organizations classify the value of a SOC: 

  • Budget – The majority of respondents did not list budget as a sign of how their organization value them 
  • Skilled Staff  Many valued the hiring of skilled workers as a sign of support for their SOC. 
  • Automation and Orchestration – The SOC teams that believed their organizations already supported through the hiring skilled staff reported their biggest challenge was implementing the automation and orchestration. 

“This showed that as SOC teams met the challenge of skilled staffing, they moved on to their next order of task: Let’s make the computers compute well,” Chris said. 

SOC METRICS 

Ismael asked about the tendency for some SOC management not to report any metrics, and those that simply reported number of incidents not reporting the right metrics. Chris reported that most people said they do provide metrics, but a stillsurprising number of people said that they don’t provide metrics at all. 

Here’s the breakdown of how respondents answered, “Do you provide metrics to your management?” 

  • Yes  69 
  • No  24 
  • We don’t know – 6 

 That roughly a third of respondents either do not report metrics or don’t know if they report metrics was telling to the survey’s author. 

In which case [metrics] obviously don’t have a central place of importance for your SOC,” Chris said. 

Regarding the most frequently used metric – number of incidents – Chris speculated that several SOCs he surveyed are attempting to meet a metric goal of zero incidents, even if it means they’re likely not getting a true reading of their cyber security effectiveness.  

You’re allowed to have zero incidents in the environment. And if you consistently meet that then you’re consistently doing a great job,” Chris said. Which is insane to me, right? Because we want to have the right number of incidents. If youactually have a cyber security problem … you should want to know about it, okay? 

Among the group of respondents who said their most common metric is informational, the desired information from their “zero incidents” metrics doesn’t actually have much bearing on the performance or the value of what the SOC is doing.

“The metrics tend to be focused on what can we easily show as opposed to what truly depicts the value that the SOC has been providing for the org,” Chris said. And at that point you have something you can show to get more funding and more support right over time. 

Chris suggests better use of metrics can truly depict the value that the SOC is providing the organization and justify the desired support it seeks. 

One which I like, which is not an easy metric to develop is actually loss prevention. If I can actually depict quantitatively, which it will not be precise, there will be some speculation in that,” Chris said. “But if I can depict quantitatively what the SOC did this month, or quarter where our efforts actually prevented or intervened in things which were going wrong and we stopped damage that’s loss prevention, right? That’s what the SOC is there for, right? If I just report, we had 13 incidents there’s not a lot of demonstration of value in that. And so always the metrics tend to be focused on what can we easily show as opposed to what truly depicts the value that the SOC has been providing for the org. “ 

SOC TOOLS 

Michael steered the discussion to the value discussion around incident metrics and their relationship with SOC capacityHow many incidents can you handle? Is it a tools issue or a people issue or a combination of both? Chris’ study also revealed subset of tools that respondents more frequently leveraged and added value to delivery of higher capacity of incident closure. 

One question on the survey asked“Do you use it? 

 “Not whether you like it or not, but do you use it? And do you use it in a way where you have full coverage or partial coverage? Because another thing about technology, and this is kind of a dirty secret in technology applications, is a lot of people buy it but actually never get it deployed fully,” Chris said. 

His survey allowed respondents to reveal their most-used technologies and to grade tools. 

The most common used technologies reported in the survey were: 

  1. SIEM 
  2. Malware Protection Systems 
  3. Next-gen Firewall 
  4. VPN 
  5. Log management  

Tools receiving the most A grades: 

  • EDR 
  • VPN 
  • Host-based Malware Protection 
  • SIEM 
  • Network Distributed Denial of Service 

Tools receiving the most F grades: 

  • Full Peak App 
  • Network-Based Application Control 
  • Artificial Intelligence 
  • TLS Intercept 

Chris pointed out that the reasoning behind the F grades may be less a case of failing and more a case of not meeting their full potential. 

“Some of these are newer in this space and some of them just feel like they’re failures for people” Chris said. Now, whether they’re technology failures or not this is what people are reporting that they don’t like in terms of the tech.  

For more findings read or download Chris Crowley’s 2020 survey here. 

Watch this entire episode of SOCwise below.

 

The post SOCwise Series: A Tale of Two SOCs with Chris Crowley appeared first on McAfee Blogs.

Beware of BRATA: How to Avoid Android Malware Attack

By Vishnu Varadaraj
Mobile BRATA

Cybercriminals go to great lengths to hack personal devices to gather sensitive information about online usersTo be more effective, they make significant investments in their technology. Also, cybercriminals are relying on tactic called social engineering, where they capitalize upon fear and urgency to manipulate unsuspecting device users to hand over their passwords, banking information, or other critical credentials. 

One evolving mobile device threat that combines malware and social engineering tactics is called BRATA. BRATA has been recently upgraded by its malicious creators and several strains have already been downloaded thousands of times, according to a McAfee Mobile Research Team report 

Here’s how you can outsmart social engineering mind games and protect your devices and personal information from BRATA and other phishing and malware attacks. 

BRATA stands for Brazilian Remote Access Tool Android and is a member of an Android malware familyThe malware initially targeted users in Brazil via Google Play and is now making its way through Spain and the United States. BRATA masquerades as an app security scanner that urges users to install fake critical updates to other apps. The apps BRATA prompts the user to update depends on the device’s configured language: Chrome for English speakers, WhatsApp for Spanish speakers, and a non-existent PDF reader for Portuguese speakers. 

Once BRATA infects a mobile device, it combines full device control capabilities with the ability to capture screen lock credentials (PIN, password, or pattern), capture keystrokes (keylogger functionality), and record the screen of the compromised device to monitor a user’s actions without their consent. 

BRATA can take over certain controls on mobile phones, such as: 

  • Hiding and unhiding incoming calls by setting the ring volume to zero and blacking out the screen 
  • Discreetly granting permissions by clicking the “Allow” button when permission dialogs appear on the screen 
  • Disabling Google Play Store, and therefore, Google Play Protect 
  • Uninstalling itself 

BRATA is like a nosy eavesdropper that steals keystrokes and an invisible hand that presses buttons at will on affected devices. 

BRATA and Social Engineering Attacks 

BRATA’s latest update added new phishing and banking Trojan capabilities that make the malware even more dangerousOnce the malware is installed on a mobile device, it displays phishing URLs from financial institutions that trick users into divulging their sensitive financial information. What makes BRATA’s banking impersonations especially effective is that the phishing URLs do not open into a web browser, which makes it difficult for a mobile user to pinpoint it as fraudulent. The phishing URLs instead redirect to fake banking log-in pages that look legitimate. 

The choice to impersonate banks is a strategic one. Phishers often impersonate authoritative institutions, such as banks and credit card companies, because they instill fear and urgency. 

Social engineering methods work because they capitalize on the fact that people want to trust others. In successful phishing attacks, people hand cybercriminals the keys instead of the cybercriminal having to steal the keys themselves. 

How Can You Stay Safe from Social Engineering? 

Awareness is the best defense against social engineering hacks. When you’re on alert and know what to look for, you will be able to identify and avoid most attempts, and antivirus tools can catch the lures that fall through the cracks. 

Here are three tell-tale signs of a social engineering attack and what you should do to avoid it. 

1. Conduct app research 

Just because an app appears on Google Play or the App Store does not mean it is legitimate. Before downloading any app, check out the number of reviews it has and the quality of the reviews. If it only has a few reviews with vague comments, it could either be because the app is new or it is fake. Also, search the app’s developer and make sure they have a clean history.  

 2. Don’t trust links from people you don’t know 

Never click on links if you are not sure where they redirect or who sent it. Be especially wary if the message surrounding the link is riddled with typos and grammar mistakes. Phishing attempts often convey urgency and use fear to pressure recipients to panic and respond too quickly to properly inspect the sender’s address or request. If you receive an urgent email or text request concerning your financial or personal information, take a deep breath and investigate if the claim is legitimate. This may require calling the customer service phone number of the institution.  

3. Subscribe to a mobile antivirus program 

Just like computers, mobile devices can be infected with viruses and malware. Protect your mobile device by subscribing to a mobile antivirus product, such as McAfee Mobile Security. McAfee Mobile Security is an app that is compatible with Android devices and iPhones, and it protects you in various ways, including safe surfing, scanning for malicious apps, and locating your device if it is lost or stolen. 

The post Beware of BRATA: How to Avoid Android Malware Attack appeared first on McAfee Blogs.

RSA Conference 2021: The Best Place to Strengthen Your Resilience

By Melissa Gaffney

This year’s RSA Conference will look a little different. Instead of booking flights and hotel rooms in the busy city of San Francisco, we’ll be powering up computers in our home office with family in the next room. We’ve all had a tumultuous year and with that comes resilience, which is also this year’s conference theme.

Ahead of the RSA virtual conference, I spoke with a few of my colleagues about the major themes we should expect to see at RSA this year.

Q: This year’s RSA Conference theme is resilience. What does ‘resilience’ mean to you when protecting the world from cyberthreats?

Scott Howitt, Senior Vice President and Chief Information Officer – The COVID lockdown has exposed to enterprises that the ability to recover your business (Business Continuity) is important in the face of disaster, but Business Resilience means that your business will be able to adapt to Black Swan events. I’ve seen technology be the catalyst for resilience for most organizations.

Raj Samani, Chief Scientist and McAfee Fellow – For me, it would be ability to continue operations in light of disruption. Whether that disruption originated from digital factors, or indeed physical but to keep the wheels turning.

John Fokker, Principal Engineer and Head of Cyber Investigations for McAfee ATR – Just like Boxing: Isn’t as much about not being hit, because you are in the ring and punches are thrown, but resilience to me is more about how fast you can get back up on your feet once you do get hit. The same is true with security operations, attackers are going to try to hit you, but how good is your defense so you can minimize the impact of the attack and in the case you do get knocked down what controls do you have in place that you can get back up and resume operations.

Amanda House, Data Scientist – Cybersecurity is a unique industry in that new cyberthreats are always improving to avoid detection. A machine learning model made a month ago could now have weakness an adversary has learned to exploit. Machine learning model practitioners need to be resilient in always innovating and improving on past models to outpace new threats. Resilience is constantly monitoring machine learning models so that when we notice decay we can quickly improve them to stop new cyberthreats.

Sherin Mathews, Senior Research Scientist – To me, cyber-resilience implies being able to protect critical assets, maintain operations, and, most importantly, embrace new technologies in the face of evolving threats. The cybersecurity field is an arms race scenario with the threat landscape changing so much. In case of threats like deepfakes, some deepfakes will reach ultra-realism in the coming few years, many will still be more amateurish, and we need to keep advancing towards the best detection methods with newer forms of threats. I feel resiliency doesn’t mean you can survive or defend against all attacks, but it means that if you are compromised, you have a plan that lets us recover quickly after a breach and continue to function. Deepfakes and other offshoots of AI will require businesses to create a transparent, agile, and holistic detection approach to protect endpoints, data, apps, and cloud services.

Q: What topic(s) do you think will play an important role at this year’s RSAC? 

Samani – I anticipate Zero Trust will play a prominent role, considering the year of remote working, and a myriad of significant threats being realised. 

Fokker – Definitely Zero-Trust but also combatting threats that come with working from home, and threat intelligence so organization can better understand the actions of their adversaries even before they step into the ring.

Q: What are you hoping to get out of RSAC this year and what do you want your attendees to take away from your session?

Howitt – I am hoping to see how others have adapted to life with COVID and now that it is receding, what do they think life with look like after.  As for my session, I want to highlight the importance of adaptability and stress that this paradigm shift means we will never go back to normal.

Q: What led you to pursue a career in cybersecurity, and what makes you stay in the industry?

House – Cybersecurity is not a career path I ever imagined for myself. As a student I always enjoyed math and computer science and I naturally gravitated toward those topics. My love of both subjects led me to pursue data science and machine learning. My first job out of college was in the cybersecurity industry and that was my first introduction to this career. Since then, I have loved how cybersecurity requires constant innovation and creative ways of using AI to stop new threats.

Mathews – My background and Ph.D. focused on developing novel dictionary learning and deep learning algorithms for classification tasks related to remote health monitoring systems (e.g., activity recognition for wearable sensors and heartbeat classification). With a background in machine learning, deep learning with applications to computer vision areas, I  entered the field of cybersecurity during my work at Intel Security/Mcafee in 2016.  I contributed towards increasing the effectiveness of cybersecurity products by creating novel machine learning/deep learning models to detect advanced threats(e.g., ransomware & steganography). In my industry work experience, I also had a chance to develop leading-edge research such as eXplainable A.I. (XAI) and deepfakes.   Overall, the advent of artificial intelligence can be considered a significant milestone as A.I. is steadily flooding several industries. However, A.I. platforms can also be misused if in the wrong hands, and as research professionals, we need to step up to detect attacks or mishaps before they happen. I feel deeply passionate about XAI, ethical A.I., the opportunity to combat deepfakes and digital misinformation, and topics related to ML and DL with cybersecurity applications. Overall, it is an excellent feeling as a researcher to use your knowledge to combat threats that affect humanity and safeguard humans.  Also, I believe that newer A.I. research topics such as GANs, Reinforcement learning, and few-shot learning have a lot to offer to combat advanced cybersecurity threats.

Q: Follow-up: What can women bring to the cybersecurity table?

House – I am fortunate to work with a lot of great women in technology at McAfee. Not only are these women on the cutting edge of innovation but they are also great mentors and leaders. We need more smart people pursuing jobs in this industry and in order to recruit new talent, especially young graduates, we need to mentor and encourage them to pursue this career. Every woman I have met in this industry wants to see new talent succeed and will go the extra mile to provide mentorship. I have also noticed women tend to have unique backgrounds in this industry. For example, some of the women I look up to have degrees in biomedical engineering or physics. These unique backgrounds allow these women to bring innovative ideas from outside cybersecurity to solve some of the toughest problems in the cybersecurity industry. We need more talent from diverse backgrounds to bring in fresh ideas.

McAfee is a proud platinum with keynote level sponsor of RSA Conference 2021. Take in the McAfee virtual booth and sessions presented by McAfee industry leaders Here are some of the best ways to catch McAfee at RSA. Can’t wait to see you there!

The post RSA Conference 2021: The Best Place to Strengthen Your Resilience appeared first on McAfee Blogs.

Gartner names McAfee a Leader in 2021 Magic Quadrant for Endpoint Protection Platforms

By Nathan Jenniges

At McAfee, we believe no one person, product or organization can combat cybercrime alone. That is why we continue to build our device-to-cloud security platform on the premise of working together – together with customers, partners and even other cybersecurity vendors. We continue this fight against the greatest challenges of our digital age: cybercrime. As part of our ongoing effort to protect what matters, we have developed breakthrough technologies over the past several years that enable customers to proactively respond to emerging threats and adversaries despite a constantly evolving threat landscape. So, today, we are extremely proud to announce that McAfee is positioned as a “Leader” in the 2021 Gartner Magic Quadrant for Endpoint Protection Platforms (EPP).   

This is a monumental development in so many ways, especially when you consider that we were not recognized in the Magic Quadrant a few years ago. This recognition speaks volumes about the innovations we are bringing to market that resonate both with our customers and industry experts. Let me review, from my perspective, why McAfee is recognized in the Leaders Quadrant.  

Here are some key innovations in our Endpoint Protection Platform that contributed to our Leader recognition: 

  • MVISION Endpoint Security (ENS) – to prevent ransomware, fileless attacks, and defend against other advanced persistent threats.  
  • MVISION Insights – to preempt and prevent attacks before they hit. 
  • MVISION EDR – to identify and stop sophisticated threat campaigns 
  • Unique capabilities to Auto-recover from ransomware attacks (Demo) 

Vision    

We set out with a vision, to create the most powerful endpoint protection platform and we are aggressively executing towards this vision. Over the past 12 months, we have made great strides in developing a market leading product, MVISION Insights, and our cloud delivered MVISION EDR. Looking ahead, our goal is to develop a unified and open eXtended Detection and Response (XDR) solution and strategy that further delivers on our device-to-cloud strategy 

We believe, McAfee’s position as a Leader further acknowledges some of our key differentiators, such as MVISION Insights, and our ability to eclipse the market with an innovative device-to-cloud strategy that spans the portfolio, including web gateway, cloud, and our network security offerings. 

Executing on Innovation 

We started by redefining our endpoint security offering with the release of MVISION Insights, a game-changing product that functions as the equivalent of an early warning system – effectively delivering preventative security. It’s hard to understate the significance of this innovation; we’re breaking the old paradigm of post-attack detection and analysis and enabling customers to stay ahead of threats. In parallel, we streamlined our EDR capabilities, which now provide AI-driven, guided investigations that ease the burden on already-stretched Security Operations Centers (SOCs) 

Increasing Value 

The bottom line is that we’re the only vendor taking a proactive risk management approach for safer cloud usage while reducing total cost of ownership. In addition, we have improved our licensing structure to fit customer needs and simplify consumption of our endpoint security solutions. We’ve made it easy to choose from a simplified licensing structure allowing customers to buy subscriptions for complete endpoint protection with no add-ons or extra costs. Our user-based licensing agreements provide for 5 devices, thus enabling frictionless expansion to incorporate additional device support in remote work environments 

Validation 

In just under a year, our latest release of McAfee Endpoint Security (ENS) 10.7 has emerged as our highest deployed version of any McAfee product worldwide and our fastest-ever single-year ramp. More than 15,000 customers comprising tens of millions of nodes are now on ENS 10.7 and are deploying its advanced defenses against escalating threats. Customers get added protected because ENS 10.7 is backed by our Global Threat Intelligence (GTI) service to provide adaptable, defense in-depth capabilities against the techniques used in targeted attacks, such as ransomware or fileless threats. It’s also easier to use and upgrade. All of this means your SOC can be assured that customers are protected with ENS 10.7 on their devices.  

Customer input guides our thinking about what to do next. Since the best critics are the people who use our products, let’s give them the last word here.  

“We are now positioned to block usage of personal instances of Sanctioned services while allowing the business to move forward with numerous cloud initiatives, without getting in the way. We also now have the visibility that was lacking to ensure that we can allow our user community to work safely from their homes without introducing risks to our corporate environment.” 

 Kenn JohnsonCybersecurity Consultant 

Commitment:  

Our continued commitment to our customers is to protect what matters. We believe that McAfee’s position in the Leaders  Quadrant validates that we are innovating at the pace and scale that meets the most stringent needs of our enterprise customers. We are proud of our product teams and threat researchers who continue to be driven by our singular mission, and who strive to stay ahead of adversaries with their focus on technological breakthroughs, and advancements in researching threats and vulnerabilities. 

What we have accomplished over the past several years, and our position as a Leader in the 2021 Gartner Magic Quadrant for EPP, is only the tip of the iceberg for what’s ahead.  

2021 Gartner Magic Quadrant for Endpoint Protection Platforms

McAfee named a Leader in the 2021 Gartner Magic Quadrant for Endpoint Protection Platforms. Download the Magic Quadrant report, which evaluates the 19 vendors based on ability to execute and completeness of vision.

Download Now

Gartner does not endorse any vendor, product or service depicted in its research publications, and does not advise technology users to select only those vendors with the highest ratings or other designation. Gartner research publications consist of the opinions of Gartner’s research organization and should not be construed as statements of fact. Gartner disclaims all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose. 

Gartner Magic Quadrant for Endpoint Protection Platforms, 5 May 2021 Paul Webber, Peter Firstbrook, Rob Smith , Mark Harris, Prateek Bhajanka

The post Gartner names McAfee a Leader in 2021 Magic Quadrant for Endpoint Protection Platforms appeared first on McAfee Blogs.

What the MITRE Engenuity ATT&CK® Evaluations Means to SOC Teams

By Kathy Trahan

SOCwise Weighs In

When the infamous Carbanak cyberattack rattled an East European bank three years ago this month few would have guessed it would later play a starring role in the MITRE Engenuity™ enterprise evaluations of cybersecurity products from ourselves and 28 other vendors. We recently shared the results of this extensive testing and in a SOCwise discussion we turn to our SOCwise experts for insights into what this unprecedented exercise may mean for SOC teams assessing both strategy concerns and their tactical effectiveness.

Carbanak is a clever opponent known for innovative attacks on banks. FIN7 uses the similar malware and strategy of effective espionage and stealth   to target U.S. retail, restaurant and hospitality sectors, according to MITRE Engenuity™, and both were highlighted in this emulation. These notorious actors have reportedly stolen more than $1 billion worldwide over the past five years. An annual event, the four-day ATT&CK Evaluation spanned 20 major steps and 174 sub-steps of the MITRE framework.

The first thing to realize about this exercise is few enterprises could ever hope to match its scope. What do you get when you match up red and blue teams? “I have not been through an exercise like that in an organization with both the red team and blue teams operationally trying to determine what their strengths and weaknesses are,” said Colby Burkett, McAfee XDR architect, a participant in the event, on our recent SOCwise episode. “And that was fantastic.”

A lot of SOC teams conduct vulnerability assessments and penetration testing, but never emulate these types of behaviors, noted Ismael Valenzuela, McAfee’s Sr. Principal Engineer and co-host of SOCwise. And, he adds that many organizations lack the resources and skills to do purple-teaming exercises.

While our SOCwise team raved about the value of conducting broad scale purple-team exercises, they expressed concern that the emphasis on “visibility” is no more valuable than “actionability.” McAfee, which scored 87% on visibility, one of the industry’s best, turned in a remarkable 100% on prevention in the MITRE Engenuity™ evaluations.

Illuminating Visibility

When we think about visibility, we think about how much useful information we can provide to SOC analysts when an attack is underway. There may be a tsunami of attack data entering SOCs, but it’s only actionable when the data that’s presented to analysts is relevant, noted Jesse Netz, Principal Engineer at McAfee.

A well-informed SOC finds a sweet spot on an axis where the number of false positives is low enough and the true positives are high enough “where you can actually do something about it,” added Netz.

He believes that for SOC practitioners, visibility is only part of the conversation. “How actionable is the data you’re getting? How usable is the platform in which that data is being presented to you?”

For example, in the evaluation we saw McAfee’s MVISION EDR preserve actionability and reduce alert fatigue. We excelled in the five capabilities that matter most to SOC teams: time-based security, alert actionability, detection in depth, protection, and visibility.\

If you can’t do anything about the information you obtain, your results aren’t really useful in any way. In this regard, prevention also trumps visibility. “It’s great that we can see and gain visibility into what’s happening,” explained Netz. “But it’s even better at the end of the day as a security practitioner to be able to prevent it.”

Expanding the Scope

The SOCwise team overall applauded the progressively sophisticated approach taken by the MITRE Engenuity™ enterprise evaluations of cybersecurity products—now in its third year. However, our panel of experts noted that this round of testing was more about defending endpoints, rather than cloud-based operations, which are fairly central to defending today’s enterprise. They expect that focus may change in the future.

The MITRE Engenuity™ enterprise evaluations provide a lot of useful data, but they should never be the single deciding factor in a cybersecurity product purchase decision. “Use it as a component of your evaluation arsenal,” advises Netz. “It’ll help to provide kind of statistics around visibility capabilities in this latest round, including some detection capabilities as well, but be focused on the details and make sure you’re getting your information from multiple sources.”

For instance, Carbanak and FIN 7 attacks may not be relevant to your particular organization, especially if they’re centered on Cloud-based operations.

While no emulation can perfectly replicate the experience of battling real-time, zero-day threats, McAfee’s Valenzuela believes these evaluations deliver tremendous value to both our customers and our threat content engineers.

 

SOCwise

Optimize your Security Operations Center with SOCwise
Visit Now

The post What the MITRE Engenuity ATT&CK® Evaluations Means to SOC Teams appeared first on McAfee Blogs.

Verisign Support for AAPI Communities and COVID Relief in India

By Verisign
Verisign Logo

At Verisign we have a commitment to making a positive and lasting impact on the global internet community, and on the communities in which we live and work.

This commitment guided our initial efforts to help these communities respond to and recover from the effects of the COVID-19 pandemic, over a year ago. And at the end of 2020, our sense of partnership with our local communities helped shape our efforts to alleviate COVID-related food insecurity in the areas where we have our most substantial footprint. This same sense of community is reflected in our partnership with Virginia Ready, which aims to help individuals in our home State of Virginia access training and certification to pivot to new careers in the technology sector.

We also believe that our team is one of our most important assets. We particularly value the diverse origins of our people; we have colleagues from all over the world who, in turn, are closely connected to their own communities both in the United States and elsewhere. A significant proportion of our staff are of either Asian American and Pacific Islander (AAPI) or South Asian origin, and today we are pleased to announce two charitable contributions, via our Verisign Cares program, directly related to these two communities.

First, Verisign is pleased to associate ourselves with the Stand with Asian Americans initiative, launched by AAPI business leaders in response to recent and upsetting episodes of aggression toward their community. Verisign supports this initiative and the pledge for which it stands, and has made a substantial contribution to the initiative’s partner, the Asian Pacific Fund, to help uplift the AAPI community.

Second, and after consultation with our staff, we have directed significant charitable contributions to organizations helping to fight the worsening wave of COVID-19 in India. Through Direct Relief we will be helping to provide oxygen and other medical equipment to hospitals, while through GiveIndia we will be supporting families in India impacted by COVID-19.

The ‘extended Verisign family’ of our employees, and their families and their communities, means a tremendous amount to us – it is only thanks to our talented and dedicated people that we are able to continue to fulfill our mission of enabling the world to connect online with reliability and confidence, anytime, anywhere.

Verisign expands its community support initiatives, with contributions to COVID-19 relief in India and to the Stand with Asian Americans initiative.

The post Verisign Support for AAPI Communities and COVID Relief in India appeared first on Verisign Blog.

IRP Panel Dismisses Afilias’ Claims to Reverse .WEB Auction and Award .WEB to Afilias

By Kirk Salzmann
Verisign Logo

On Thursday, May 20, a final decision was issued in the Independent Review Process (IRP) brought by Afilias against the Internet Corporation for Assigned Names and Numbers (ICANN), rejecting Afilias’ petition to nullify the results of the July 27, 2016 public auction for the .WEB new generic top level domain (gTLD) and to award .WEB to Afilias at a substantially lower, non-competitive price. Nu Dotco, LLC (NDC) submitted the highest bid at the auction and was declared the winner, over Afilias’ lower, losing bid. Despite Afilias’ repeated objections to participation by NDC or Verisign in the IRP, the Panel ordered that NDC and Verisign could participate in the IRP in a limited way each as amicus curiae.

Consistent with NDC, Verisign and ICANN’s position in the IRP, the Order dismisses “the Claimant’s [Afilias’] request that Respondent [ICANN] be ordered by the Panel to disqualify NDC’s bid for .WEB, proceed with contracting the Registry Agreement for .WEB with the Claimant in accordance with the New gTLD Program Rules, and specify the bid price to be paid by the Claimant.” Contrary to Afilias’ position, all objections to the auction are referred to ICANN for determination. This includes Afilias’ objections as well as objections by NDC that Afilias violated the auction rules by engaging in secret discussions during the Blackout Period under the Program Rules.

The Order Dismisses All of Afilias’ Claims of Violations by NDC or Verisign

Afilias’ claims for relief were based on its allegation that NDC violated the New gTLD Program Rules by entering into an agreement with Verisign, under which Verisign provided funds for NDC’s participation in the .WEB auction in exchange for NDC’s commitment, if it prevailed at the auction and entered into a registry agreement with ICANN, to assign its .WEB registry agreement to Verisign upon ICANN’s consent to the assignment. As the Panel determined, the relief requested by Afilias far exceeded the scope of proper IRP relief provided for in ICANN’s Bylaws, which limit an IRP to a determination whether or not ICANN has exceeded its mission or otherwise failed to comply with its Articles of Incorporation and Bylaws.

Issued two and a half years after Afilias initiated its IRP, the Panel’s decision unequivocally rejects Afilias’ attempt to misuse the IRP to rule on claims of NDC or Verisign misconduct or obtain the .WEB gTLD for itself despite its losing bid. The Panel held that it is for ICANN, which has the requisite knowledge, expertise, and experience, to determine whether NDC’s contract with Verisign violated ICANN’s Program Rules. The Panel further determined that it would be improper for the Panel to dictate what should be the consequences of an alleged violation of the rules contained in the gTLD Applicant Guidebook, if any took place. The Panel therefore denied Afilias’ requests for a binding declaration that ICANN must disqualify NDC’s bid for violating the Guidebook rules and award .WEB to Afilias.

Despite pursuing its claims in the IRP for over two years — at a cost of millions of dollars — Afilias failed to offer any evidence to support its allegations that NDC improperly failed to update its application and/or assigned its application to Verisign. Instead, the evidence was to the contrary. Indeed, Afilias failed to offer testimony from a single Afilias witness during the hearing on the merits, including witnesses with direct knowledge of relevant events and industry practices. It is apparent that Afilias failed to call as witnesses any of its own officers or employees because, testifying under penalty of perjury, they would have been forced to contradict the false allegations advanced by Afilias during the IRP. By contrast, ICANN, NDC and Verisign each supported their respective positions appropriately by calling witnesses to testify and be subject to cross-examination by the three-arbitrator panel and Afilias, under oath, with respect to the facts refuting Afilias’ claims.

Afilias also argued in the IRP that ICANN is a competition regulator and that ICANN’s commitment, contained in its Bylaws, to promote competition required ICANN to disqualify NDC’s bid for the .WEB gTLD because NDC’s contract with Verisign may lead to Verisign’s operation of .WEB. The Panel rejected Afilias’ claim, agreeing with ICANN and Verisign that “ICANN does not have the power, authority, or expertise to act as a competition regulator by challenging or policing anticompetitive transactions or conduct.” The Panel found ICANN’s evidence “compelling” that it fulfills its mission to promote competition through the expansion of the domain name space and facilitation of innovative approaches to the delivery of domain name registry services, not by acting as an antitrust regulator. The Panel quoted Afilias’ own statements to this effect, which were made outside of the IRP proceedings when Afilias had different interests.

Although the Panel rejected Afilias’ Guidebook and competition claims, it did find that the manner in which ICANN addressed complaints about the .WEB matter did not meet all of the commitments in its Bylaws. But even so, Afilias was awarded only a small portion of the legal fees it hoped to recover from ICANN.

Moving Forward with .WEB

It is now up to ICANN to move forward expeditiously to determine, consistent with its Bylaws, the validity of any objections under the New gTLD Program Rules in connection with the .WEB auction, including NDC and Verisign’s position that Afilias should be disqualified from making any further objections to NDC’s application.

As Verisign and NDC pointed out in 2016, the evidence during the IRP establishes that collusive conduct by Afilias in connection with the auction violated the Guidebook. The Guidebook and Auction Rules both prohibit applicants within a contention set from discussing “bidding strategies” or “settlement” during a designated Blackout Period in advance of an auction. Violation of the Blackout Period is a “serious violation” of ICANN’s rules and may result in forfeiture of an applicant’s application. The evidence adduced in the IRP proves that Afilias committed such violations and should be disqualified. On July 22, just four days before the public ICANN auction for .WEB, Afilias contacted NDC, following Afilias’ discussions with other applicants, to try to negotiate a private auction if ICANN would delay the public auction. Afilias knew the Blackout Period was in effect, but nonetheless violated it in an attempt to persuade NDC to participate in a private auction. Under the settlement Afilias proposed, Afilias would make millions of dollars even if it lost the auction, rather than auction proceeds being used for the internet community through the investment of such proceeds by ICANN as determined by the community.

All of the issues raised during the IRP were the subject of extensive briefing, evidentiary submissions and live testimony during the hearing on the merits, providing ICANN with a substantial record on which to render a determination with respect to .WEB and proceed forward with delegation of the new gTLD. Verisign stands ready to assist ICANN in any way we can to quickly resolve this matter so that domain names within the .WEB gTLD can finally be made available to businesses and consumers.

As a final observation: Afilias no longer operates a registry business, and has neither the platform, organization, nor necessary consents from ICANN, to support one. Inconsistent with Afilias’ claims in the IRP, Afilias transferred its entire registry business to Donuts during the pendency of the IRP. Although long in the works, the sale was not disclosed by Afilias either before or during the IRP hearings, nor, remarkably, did Afilias produce any company witness for examination who might have disclosed the sale to the panel of arbitrators or others. Based on a necessary public disclosure of the Donuts sale after the hearings and before entry of the Panel’s Order, the Panel included in its final Order a determination that it is for ICANN to determine whether the Afilias’ sale is itself a basis for a denial of Afilias’ claims with respect to .WEB.

Verisign’s analysis of the Independent Review Process decision regarding the awarding of the .web top level domain.

The post IRP Panel Dismisses Afilias’ Claims to Reverse .WEB Auction and Award .WEB to Afilias appeared first on Verisign Blog.

Why May 2021 Represents a New Chapter in the “Book of Cybersecurity Secrets”

By Ken Kartsen
Was ist ein Trojaner?

May 2021 has been an extraordinary month in the cybersecurity world, with the DoD releasing its DoD Zero Trust Reference Architecture (DoDZTRA), the Colonial Pipeline being hit with a ransomware attack, and the White House releasing its Executive Order on Improving the Nation’s Cybersecurity (EO). Add to that several major vendors that our government depends on for its critical operations disclosing critical vulnerabilities that could potentially expose our nation’s critical infrastructure to even more risk, ranging from compromised email and cloud infrastructures to very sophisticated supply chain attacks like the SolarWinds hack, which could have started as early as 2019.

If the situation sounds ominous, it is. The words and guidance outlined in the DoDZTRA and EO must be followed up with a clear path to action and all the stakeholders, both public and private, are not held accountable for progress. This should not be another roll-up reporting exercise, time to study the situation, or end up in analysis paralysis thinking about the problem. Our adversaries move at speeds we never anticipated by leveraging automation, artificial intelligence, machine learning, social engineering, and more vectors against us. It’s time for us to catch up and just very possibly think differently to get ahead.

There is no way around it: This time our nation must invest in protecting our way of life today and for future generations.

The collective “we” observed what happened when ransomware hit a portion of the nation’s critical infrastructure at Colonial Pipeline. If the extortion wasn’t bad enough, the panic buying of gasoline and even groceries in many of Eastern U.S. states impacted thousands of people seemingly overnight, with help from social and traditional media. It’s too early to predict what the exact financial and social impacts may have been on this attack. I suspect the $4.4M ransom paid was very small in the greater scheme of the event.

May 2021 has provided a wake-up call for public-private cooperation like we’ve never seen before. Perhaps we need to rethink cybersecurity altogether. During his keynote remarks at the recent RSA Conference, McAfee CTO Steve Grobman talked about how “as humans, we are awful at perceiving risk.” Influenced by media, anecdotal data, and evolutionary biology, we let irrational fears drive decision-making, which leads humans to misperceive actual risks and sub-optimize risk reduction in both the physical and cyber world. To combat these tendencies, Steve encourages us to “be aware of our biases and embrace data and science-based approaches to assess and mitigate risk.”

Enter Zero Trust Cybersecurity, which is an architectural approach – not a single vendor product or solution. The DoDZTRA takes a broader view of Zero Trust than the very narrow access control focus, saying it is “a cybersecurity strategy and framework that embeds security throughout the architecture to prevent malicious personas from accessing our most critical assets.” And our most critical assets are data.

NSA also recently weighed in on Zero Trust, recommending that an organization invest in identifying its critical data, assets, applications, and services. The NSA guidance goes on to suggest placing additional focus on architecting from the inside out; ensuring all paths to data, assets, applications, and services are secure; determining who needs access; creating control policies; and finally, inspecting and logging all traffic before reacting.

These practices require full visibility into all activity across all layers — from endpoints to the network (which includes cloud) — to enable analytics that can detect suspicious activity. The ability to have early or advanced warnings of global and local threat campaigns, indicators of compromise, and the capability to deliver proactive countermeasures is a must-have as part of an organization’s defensive strategies.

The Zero Trust guidance from both DoD and NSA is worth following. It’s also worth reprising the concept of defense in depth – the cybersecurity strategy of leveraging multiple security mechanisms to protect an organization’s assets. Relying on a single vendor for all an organization’s IT and security needs makes it much easier for the adversary.

If you believe in a good conspiracy theory, the month of May 2021 could provide great material for a made-for-TV movie. Earlier I mentioned that the collective “we” needs to be held accountable. Part of that accountability is defining success metrics as we take on a new path to real cybersecurity.

 

 

The post Why May 2021 Represents a New Chapter in the “Book of Cybersecurity Secrets” appeared first on McAfee Blogs.

Potentially Malicious Apps Your Kids May Use

By Toni Birdsong

It’s a question I get several times a year from anxious parents, either via a direct messagean email or even in line at the grocery store. It goes something like this: What’s the one thing you wish you’d done better when monitoring your kids’ technology?” 

Both of my kids are now young adults, and together, we survived a handful of digital mishaps. So, tend to have a few answers ready. I’ll go into one of those answers in this post, and here it is: I’d physically pick up their phone more often and ask questions about the apps I didn’t recognize.  

And here’s why.  

There are the apps on your child’s phone that are familiar. They are the easy ones. We know what color they are, what their graphic avatarlook like — the little ghost on the yellow background, the little bird, the camera on the bright purple and orange background. We may have gone through the app together or even use one or two of the apps ourselves. There’s Snapchat, TikTok, Twitter, YouTube, WhatsApp, Kik, and Instagram, among othersThere are the mainstay photo apps (VSCO, Facetune, PicsArt) and games (The Sims, Fortnite, Minecraft)We may not like all the apps, but we’ve likely talked about the risks and feel comfortable with how your kids use them. With general recognition, it’s easy to have a false sense of security about what apps our kids are using 

Then, there are the apps on your child’s phone you know nothing about — and there are plenty. Rather than dismiss your concern because you don’t understand the app or because you may not have the energy to start an argumentnext time, think about pausing to take a closer look. If you have concerns, address them sooner rather than later.   

Questions to consider when analyzing an app or online community: 

  • What’s the goal of this app? Why was it created? 
  • What kind of community does this app attract?  
  • What is the age requirement? 
  • Are anonymous accounts allowed? 
  • What privacy settings does it have? 
  • Can kids run up charges on this app? 
  • Does the app require location information to use it? 
  • What red flags are people talking about (google it)?   
  • What do the app reviews say? What do non-profit advocacy groups such as Common Sense Media say about this app?  

Potentially Risky Apps, Community Forums 

Here are just a few of the non-mainstream apps that kids use that may not be on your radar but may need a second look. Note: Every app has the potential to be misused. The apps mentioned here are also used every day for connection, entertainment, and harmless fun. Here are just a few this author has had experience withand others commonly documented in the media.  

Quick Tip: It’s possible a child might bury an app inside a folder or behind other apps on their home screens, making it harder to findBy going into settings in either iOS (Settings > General > iPhone Storage) or Android (Google Play Store > Apps >All), you can usually get a quick view of all the apps that exist on a phone.  

  • Privacy, Safety Gaps 

Almost every app has privacy gaps if settings and monitoring are neglected. However, apps such as Live.Me, Game Pigeon, and Zoomerang (among many others) may have loopholes when it comes to age verification, location tracking, and gaps in personal data security. These gaps can give potential predators access to kids and increases opportunities for cyberbullying.  

Safe Family Tip: Sit down with your kids, go through any unfamiliar apps, and use parental controls to monitor all family device activity.   

  • Secrecy  

If a child wants to keep activity or content secret from a parent, they will likely find a way. Some of the apps kids use to hide games, photos, or texts are encryption apps (apps that scramble content to outside sources) such as WhatsApp, Proton VPNProtonMailTelegram, and Signal. Other secrecy apps are called vault apps (apps that can be disguised, hidden, or locked), such as Calculator, Vault, HideItPro, App Locker, and Poof.  

Safe Family Tip: If you find one of these apps on your child’s phone, stay calm. Kids want privacy, which is normal. However, if the content you see is risky, remind your child that no content is 100% private, even if it’s in a vault app. In addition, commit to the ongoing dialogue that strengthens trust and together, considers setting safety expectations for devices, which may include parental controls 

  • Geotagging  

Some apps, especially dating-type apps, require users to allow geotagging to connect you with people in your area. Yubo, which is an app like Tinder, is one your kids may be using that requires location to use it. Live.Me is another geotagging app.  

Safe Family Tip: Go over the reasons location apps (and dating apps) are dangerous with your child. Sharing their location and meeting In Real Life (IRL) has become the norm to many kids. Remind them of the risks of this kind of behavior and together, put new boundaries in place.  

  • Extremist Ideas 

The web is full of sketchy, dark pockets kids can stumble into. They can hear about a community forum or app from a friend and be wowed simply because it’s different and edgyWhile there are plenty of harmless conversations taking place on these apps, spaces such as Discord, Reddit, and Twitch have reportedly housed communities’ extreme ideologies that target vulnerable kids 

Safe Family Tip: Be aware of behavior changes. Talk with your kids about the wide range of ideals and agendas promoted online, how to think critically about conversations and content, and most importantly, how to spot these communities. 

  • Anonymous Profiles  

Anonymity online is problematic for a plethora of reasons. Apps such as Yolo, Tumblr, and TellonymOmegleYikYak, Whisper, LMK, MeetMe, are just a few of those apps to look for. Many of these apps are chat apps used to eventually meet up with new friends in real life (IRL). However, when apps allow anonymous accounts, it’s almost impossible to trace inappropriate content, threats, or bullying incidents.  

Safe Family Tip: Kids get excited about making friends and having new experiences— so much so, they can ignore potential consequences. Discuss issues that may arise (catfishing, sextortion, scams, bullying) when people hide behind anonymous names and profiles. If needed, give real examples from the news where these apps have been connected to tragic outcomes.   

  • Inflammatory Content  

Several apps and online communities have been connected to violence, hate content, intolerance, and fanaticism. A few of these sites include 4Chan, 8ChanAnyChanGab, SaidIt.Net, and 8Kun, among many others 

Safe Family Tip: Note any behavior changes in your child. Talk often about digital literacy and being a responsible publisher (and consumer) of media online.   

Staying in step with your child’s latest and greatest app affinity isn’t easy, and every parent makes mistakes in how they approach the task. However, kids of all ages (no matter how tech-savvy they are) need boundaries, expectations, and consistent and honest dialogue when it comes to digital habits and staying safe online. If you don’t know where to start (or start over), one first step is to start today and commit to staying aware of the digital risks out there. In addition, make time to have regular, open conversations with your child about their favorite apps — the ones you know about and the ones you may not.  

The post Potentially Malicious Apps Your Kids May Use appeared first on McAfee Blogs.

Verisign Q1 2021 Domain Name Industry Brief: 363.5 Million Domain Name Registrations in the First Quarter of 2021

By Verisign
Q1 2021 Domain Name Industry Brief Report Cover

Today, we released the latest issue of the Domain Name Industry Brief, which shows that the first quarter of 2021 closed with 363.5 million domain name registrations across all top-level domains (TLDs), a decrease of 2.8 million domain name registrations, or 0.8%, compared to the fourth quarter of 2020.1,2 Domain name registrations have decreased by 3.3 million, or 0.9%, year over year.1,2

Q1 2021 domain name registrations across all top-level domains

Check out the latest issue of the Domain Name Industry Brief to see domain name stats from the first quarter of 2021, including:

This quarter’s Domain Name Industry Brief also includes a look at a recent collaboration between Verisign, ICANN and industry partners to combat botnets.

To see past issues of the Domain Name Industry Brief, please visit verisign.com/dnibarchives.


1. The figure(s) includes domain names in the .tk ccTLD. .tk is a ccTLD that provides free domain names to individuals and businesses. Revenue is generated by monetizing expired domain names. Domain names no longer in use by the registrant or expired are taken back by the registry and the residual traffic is sold to advertising networks. As such, there are no deleted .tk domain names. https://www.businesswire.com/news/home/20131216006048/en/Freenom-Closes-3M-Series-Funding#.UxeUGNJDv9s.

2. The generic top-level domain (gTLD), new gTLD (ngTLD) and ccTLD data cited in the brief: (i) includes ccTLD Internationalized Domain Names (IDNs), (ii) is an estimate as of the time this brief was developed and (iii) is subject to change as more complete data is received. Some numbers in the brief may reflect standard rounding.

The internet had 363.5 million domain name registrations at the end of Q1 2021.

The post Verisign Q1 2021 Domain Name Industry Brief: 363.5 Million Domain Name Registrations in the First Quarter of 2021 appeared first on Verisign Blog.

8 Tips for Staying Safe from Ransomware Attacks

By McAfee

What is Ransomware?

Over the past year, you may have seen the term ransomware popping up frequently. There’s good reason for that as ransomware is responsible for 21% of all cyberattacks, according to a new report. For enterprising hackers, this tactic has become standard operating procedure because it’s effective and organizations are willing to pay. But what does that mean for you and living a confident life online? Fortunately, there are a number of things individuals can do to avoid ransomware. But first, let’s start with the basics.  

Ransomware is malware that employs encryption to hold a victim’s information at ransom. The hacker uses it to encrypt a user or organization’s critical data so that they cannot access files, databases, or applications. A ransom is then demanded to provide access. It is a growing threat, generating billions of dollars in payments to cybercriminals and inflicting significant damage and expenses for businesses and governmental organizations.  

Why should I care?

McAfee Labs counted a 60% increase in attacks from Q4 2019 to Q1 2020 in the United States alone. Unfortunately, the attacks targeting organizations also impact the consumers who buy from them, as the company’s data consists of its customers’ personal and financial information. That means your data if you’ve done business with the affected company. Fortunately, there are many ways you can protect yourself from ransomware attacks.

How do I know if my information is vulnerable?

When a company is hit with a ransomware attack, they typically are quick to report the incident, even though a full analysis of what was affected and how extensive the breach may have been may take much longer. Once they have the necessary details they may reach out to their customers via email, through updates on their site, social media, or even the press to report what customer data may be at risk. Paying attention to official communications through these various channels is the best way to know if you’ve been affected by a ransomware attack.  

The connection between phishing and ransomware 

The top ransomware infection vectors – a fancy term for the way you get ransomware on your device – are phishing and vulnerability exploits. Of these two, phishing is responsible for a full 41% of ransomware infections. Ironically, this is good news, because phishing is something we can learn to spot and avoid by educating ourselves about how scammers work. Before we get into specific tips, know that phishing can take the form of many types of communications including emails, texts, and voicemails. Also know that scammers are convincingly imitating some of the biggest brands in the world to get you to surrender your credentials or install malware on your device. With that in mind, here are several tips to avoid getting phished. 

1. Be cautious of emails asking you to act  

If you receive an email, call, or text asking you to download software or pay a certain amount of money, don’t click on anything or take any direct action from the message. Instead, go straight to the organization’s website. This will prevent you from downloading malicious content from phishing links or forking over money unnecessarily. 

2. Hover over links to see and verify the URL 

If someone sends you a message with a link, hover over the link without clicking on it. This will allow you to see a link preview. If the URL looks suspicious, don’t interact with it and delete the message altogether. 

3. Go directly to the source 

Instead of clicking on a link in an email or text message, it’s always best to check directly with the source to verify an offer, request, or link. 

4. Browse with caution 

McAfee offers the free McAfee WebAdvisor, which can help identify malicious websites and suspect links that may be associated with phishing schemes. 

Put ransomware fears in your rearview mirror with these tips: 

If you do get ransomware, the story isn’t over. Below are 8 remediation tips that can help get your data back, along with your peace of mind. 

1. Back up your data  

If you get ransomware, you’ll want to immediately disconnect any infected devices from your networks to prevent the spread of it. This means you’ll be locked out of your files by ransomware and be unable to move the infected files. Therefore, it’s crucial that you always have backup copies of them, preferably in the cloud and on an external hard drive. This way, if you do get a ransomware infection, you can wipe your computer or device free and reinstall your files from backup.  Backups protect your data, and you won’t be tempted to reward the malware authors by paying a ransom. Backups won’t prevent ransomware, but they can mitigate the risks.

2. Change your credentials 

If you discover that a data leak or a ransomware attack has compromised a company you’ve interacted with, act immediately and change your passwords for all your accounts. And while you’re at it, go the extra mile and create passwords that are seriously hard to crack with this next tip.

3. Take password protection seriously 

When updating your credentials, you should always ensure that your password is strong and unique. Many users utilize the same password or variations of it across all their accounts. Therefore, be sure to diversify your passcodes to ensure hackers cannot obtain access to all your accounts at once, should one password be compromised. You can also employ a password manager to keep track of your credentials and generate secure login keys.   

4. Enable two-factor or multi-factor authentication 

Two or multi-factor authentication provides an extra layer of security, as it requires multiple forms of verification. For instance, you’ll be asked to verify your identity through another device, such as a phone. This reduces the risk of successful impersonation by hackers.   

5. Browse safely online 

Be careful where you click. Don’t respond to emails and text messages from people you don’t know, and only download applications from trusted sources. This is important since malware authors often use social engineering to get you to install dangerous files. Using a security extension on your web browser is one way to browse more safely.

6. Only use secure networks 

Avoid using public Wi-Fi networks, since many of them are not secure, and cybercriminals can snoop on your internet usage. Instead, consider installing a VPN, which provides you with a secure connection to the internet no matter where you go.    

7. Never pay the ransom 

While it is often large organizations that fall prey to ransomware attacks, you can also be targeted by a ransomware campaign. If this happens, don’t pay the ransom. Although you may feel that this is the only way to get your encrypted files back, there is no guarantee that the ransomware developers will send a decryption tool once they receive the payment. Paying the ransom also contributes to the development of more ransomware families, so it’s best to hold off on making any payments. Thankfully there are free resources devoted to helping you like McAfee’s No More Ransomware initiative McAfee, along with other organizations, created www.nomoreransom.org/ to educate the public about ransomware and, more importantly, to provide decryption tools to help people recover files that have been locked by ransomware. On the site you’ll find decryption tools for many types of ransomware, including the Shade ransomware.

7. Use a comprehensive security solution 

Adding an extra layer of security with a solution such as McAfee® Total Protection, which includes Ransom Guard, can help protect your devices from these cyber threats. In addition, make sure you update your devices’ software (including security software!) early and often, as patches for flaws are typically included in each update. Comprehensive security solutions also include many of the tools we mentioned above and are simply the easiest way to ensure digital wellness online.  

The post 8 Tips for Staying Safe from Ransomware Attacks appeared first on McAfee Blog.

The Executive Order – Improving the Nation’s Cyber Security

By Jason White

On May 12, the President signed the executive order (EO) on Improving the Nation’s Cybersecurity. As with every executive order, it establishes timelines for compliance and specific requirements of executive branch agencies to provide specific plans to meet the stated objectives.

It is clear from the EO that the Executive Office of the President is putting significant emphasis on cyber threat intelligence and how it will help government agencies make better decisions about responding to cyber threats and incidents.  The EO also focuses on how federal agencies will govern resource access through Zero Trust and how to comprehensively define and protect hybrid service architectures.  These are critical aspects as government agencies are moving more and more mission-critical applications and services to the cloud.

The call to action in this executive order is long overdue, as modernizing the nation’s cybersecurity approach and creating coordinated intelligence and incident response capabilities should have occurred years ago. Requiring that agencies recognize the shift in the perimeter and start tearing down silos between cloud services and physical data center services is going serve to improve visibility and understanding of how departments and sub-agencies are being targeted by adversaries.

I am sure government leaders have started to review their current capability along with their strategic initiatives to ensure they map to the new EO requirements.  Where gaps are identified, agencies will need to update their plans and rethink their approach to align with the new framework and defined capabilities such as endpoint detection and response (EDR) and Zero Trust.

While the objectives outlined are critical, I do believe that agencies need to take appropriate cautions when deciding their paths to compliance. The goal of this executive order is not to add additional complexity to an already complex security organization. Rather, the goal should be to simplify and automate wherever possible. If the right approach is not decided on early, the risk is very real of adding too much complexity in pursuit of compliance, thus eroding the desired outcomes.

On the surface, it would seem that the areas of improvement outlined in the EO can be taken individually – applied threat intelligence, EDR, Zero Trust, data protection, and cloud services adoption. In reality, they should be viewed collectively. When considering solutions and architectures, agency leaders should be asking themselves some critical questions:

  1. How does my enterprise derive specific context from threat intelligence to drive proactive and predictive responses?
  2. How can my enterprise distribute locally generated threat intelligence to automatically protect my assets in a convict once, inoculate many model?
  3. How does threat intelligence drive coordinated incident response through EDR?
  4. How do threat intelligence and EDR capabilities enable informed trust in a Zero Trust architecture?
  5. How do we build upon existing log collection and SIEM capabilities to extend detection and response platforms beyond the endpoint?
  6. How do we build a resilient, multi-layered Zero Trust architecture without over complicating our enterprise security plan?

The executive order presents a great opportunity for government to evolve their cybersecurity approach to defend against modern threats and enable a more aggressive transition to the cloud and cloud services. There is also significant risk, as the urgency expressed in the EO could lead to hasty decisions that create more challenges than they solve.  To capitalize on the opportunity presented in this executive order, federal leaders must embrace a holistic approach to cybersecurity that integrates all the solutions into a platform approach including robust threat intelligence.  A standalone Zero Trust or EDR product will not accomplish an improved or modernized cybersecurity approach and could lead to more complexity.  A well-thought-out platform, not individual products, will best serve public sector organizations, giving them a clear architecture that will protect and enable our government’s future.

 

 

The post The Executive Order – Improving the Nation’s Cyber Security appeared first on McAfee Blogs.

McAfee a Leader in The Forrester Wave™ Unstructured Data Security Platforms

By Graham Clarke

The mass migration of employees working from home in the last 14 months has accelerated the digital transformation of businesses.  Cloud applications are no longer a “nice to have,” they are now essential to ensure that businesses survive.  This introduces new security challenges in being able to locate and control sensitive data across all the potential exfiltration vectors regardless of whether they are in the cloud; on premise via managed or unmanaged machines.  Attempting to control these vectors through multiple products results in unnecessary cost and complexity.

McAfee anticipated and responded to this trend, solving all these challenges through the launch of our MVISION Unified Cloud Edge solution in 2020. Unified Cloud Edge doesn’t simply offer data protections controls for endpoints, networks, web and the cloud; rather, Multi-Vector Data Protection provides customers with unified data classification and incident management that enables them to define data workflows once and have policies enforced consistently across each vector. Because of the unified approach and our extensive data protection heritage, we are delighted to be named a Leader in The Forrester Wave™: Unstructured Data Security Platforms, Q2 2021. In our opinion, we were the top ranked dedicated cyber security vendor within the report.

We received the highest possible score in nine criteria with Forrester Research commenting on our “cloud-first data security approachand customer recognition of our “breadth of capabilities (in particular for supporting remote work and cloud use)”.

We continue to innovate within our  Unified Cloud Edge solution through the introduction of remote browser isolation to protect against risky web sites (our “heavy focus in supporting security and data protection in the cloud), which uniquely to the market allows us to continue applying DLP controls even during isolated sessions. Delivering on increased customer value through innovation isn’t just limited to new features, for instance we continue to drive down costs through an unlimited SaaS application bundle.

Click below to read the full report.

The Forrester Wave™: Unstructured Data Security Platforms, Q2 2021

McAfee is delighted to be named a Leader in The Forrester Wave™ Unstructured Data Security Platforms, Q2 2021 report. We received the highest possible score in nine criteria with Forrester Research

Download Now

 

The Forrester Wave™: Unstructured Data Security Platforms, Q2 2021, 17 May 2021, Heidi Shey with Amy DeMartine, Shannon Fish, Peggy Dostie

The post McAfee a Leader in The Forrester Wave™ Unstructured Data Security Platforms appeared first on McAfee Blogs.

McAfee Named a 2021 Gartner Peer Insights Customers’ Choice for SWG

By Sadik Al-Abdulla

The McAfee team is very proud to announce that, for the third year in a row, McAfee was named a 2021 Gartner Peer Insights Customers’ Choice for Secure Web Gateways for its Web Solution.

In its announcement, Gartner explains, “The Gartner Peer Insights Customers’ Choice is a recognition of vendors in this market by verified end-user professionals, taking into account both the number of reviews and the overall user ratings.” To ensure fair evaluation, Gartner applies rigorous methodology for recognizing vendors with a high customer satisfaction rate.

For the distinction, a vendor needs at least 20+ Reviews from Customers with over $50M Annual Review in 18-month timeframe, above Market Average Overall Rating, and above Market Average User Interest and Adoption.

About Gartner Peer Insights and “Voice of the Customer” report:

Gartner Peer Insights is a peer review and ratings platform designed for enterprise software and services decision makers. Reviews are organized by products in markets that are defined by Gartner Research in Magic Quadrant and Market Guide documents.

The “Voice of the Customer” is a document that applies a methodology to aggregated Gartner Peer Insights’ reviews in a market to provide an overall perspective for IT decision makers. This aggregated peer perspective, along with the individual detailed reviews, is complementary to expert-generated research such as Magic Quadrants and Market Guides. It can play a key role in your buying process, as it focuses on direct peer experiences of buying, implementing and operating a solution. A complimentary copy of the Peer Insights ‘Voice of the Customer’ report is available on the McAfee Web site.

Here are some quotes from customers that contributed to this distinction:

“We were using an on-prem web gateway and we have been migrated to UCE recently due to the pandemic situations. It gives us the flexibility to manage our Web GW as a SaaS solution. The solution also provides us bunch of rulesets for our daily usage needs.” CIO in the Manufacturing Industry [Link here]

“McAfee Secure web gateway provides the optimum security required for the employees of the Bank surfing the Internet. It also provides the Hybrid capabilities which allows to deploy same policies regardless of the physical location of the endpoint.”       [Link here]

MVISION Unified Cloud Edge was specifically designed to enable our customers to make a secure cloud transformation by bringing the capabilities of our highly successful Secure Web Gateway appliance solution to the cloud as part of a unified cloud offering. This way, users from any location or device can access the web and the cloud in a fast and secure manner.

“The McAfee Web Gateway integrated well with existing CASB and DLP solutions. It has been very effective at preventing users from going to malware sites. The professional services we purchased for implementation was the best we’ve ever had from any vendor of any IT security product.” Senior Cybersecurity Professional in the Healthcare Industry   [Link here]

McAfee’s Next-Gen Secure Web Gateway technology features tight integration with our CASB and DLP solutions through a converged management interface, which provides unified policies that deliver unprecedented cloud control while reducing cost and complexity. By integrating our SWG, CASB, DLP, and RBI solutions, MVISION Unified Cloud Edge provides a complete SASE security platform that delivers unparalleled data and threat protection.

“We benchmarked against another very well known gateway and there was no comparison. The other gateway only caught a small fraction of what MWG caught when filtering for potentially harmful sites.” Information Security Officer in the Finance Industry   [Link here]

As the threat landscape continues to evolve, it’s important for organizations to have a platform that is integrated and seamless. That’s why McAfee provides integrated multi-layer security including global threat intelligence, machine learning, sandboxing, UEBA, and Remote Browser Isolation to block known threats and detect the most elusive attacks.

To learn more about this distinction, or to read the reviews written about our products by the IT professionals who use them, please visit Gartner Peer Insights’ Customers’ Choice announcement for Web. To all of our customers who submitted reviews, thank you! These reviews mold our products and our customer journey, and we look forward to building on the experience that earned us this distinction!

June 2021 Gartner Peer Insights ‘Voice of the Customer’: Secure Web Gateways

McAfee is named a Customers’ Choice in the June 2021 Gartner Peer Insights “Voice of the Customer”: Secure Web Gateways.

Download Now

 

The post McAfee Named a 2021 Gartner Peer Insights Customers’ Choice for SWG appeared first on McAfee Blogs.

Transforming to a Predictive Cyber Defense

By Britt Norwood

How much of the global economy is managed from a home network these days? Or, more importantly, what percentage of your company’s most sensitive data passes through employee home networks right now?

If you’re like me, working from a home office, you can’t help but think about all of the cybersecurity tradeoffs that accompanied the widespread shift from on-premises to cloud-delivered services. Better productivity in exchange for deeper vulnerabilities—like man-in-the-middle attacks—wasn’t a choice many cybersecurity pros would make under normal circumstances.

Yet, for better—and worse—there’s no going back to how things were. When Gartner revealed its annual list of top cybersecurity trends last month, we learned that while 64% of employees now work from home, at least 30-40% will continue to do so once the pandemic is over.1 In the foreseeable future, the Wi-Fi streaming your kids’ favorite shows will transport an untold amount of business data, too. All of which must be protected from device to cloud.

In the same report, Gartner said that with so many employees continuing to work from home, “endpoint protection services will need to move to cloud-delivered services.” While the vast majority of our customers made the overnight switch—many still need to adopt a cloud-native architecture.

No doubt the best transformations are the ones you plan for and manage from end-to-end. But the cloud transformation that many didn’t plan for—and most cybersecurity defenses couldn’t handle—turned out to pack the biggest punch. Here are three ways to better prepare for what comes next.

1. Establish Building Blocks

Stopping unauthorized access to corporate assets—and protecting them—is, on the face of it, a never-ending battle. You can’t build a moat, a wall, or a bubble and say, hey, my work here is done. We’ve found our customers need to solve two primary issues:

  • First, identify where data can leak and be stolen.
  • Second, prevent that event from happening with data protection spanning endpoints, web gateway, and the cloud.

So, we created the MVISION Device-to-Cloud Suites to protect all of this data coursing through home networks. Among the many types of threats we’ve tracked, one of the biggest threats is viruses infecting browsers and capturing keystrokes to steal sensitive information. We solve this by isolating a browser so that no one can see what information has been entered.

While paradigms may shift, going forward we believe it’s predictive defenses that will enable faster, smarter and more effective data loss prevention. We get there by enabling optimized endpoint threat protection, Extended Detection and Response (EDRs) that improve mean time to detect and respond to threats, and useful analytics that not only empower your SOC but also help inform and engage executives.

2. Understand Threat Perspectives

Gaining executive and board-level buy-in has long been a topic of concern in the cybersecurity field. Thanks in part to the harsh publicity and severe damage caused by state-sponsored hacks that day is finally in sight. In a recent blog, McAfee’s Steve Grobman indicated SolarWinds is the first major supply chain attack which represents a shift in tactics where a nation state has employed a new weapon for cyber-espionage.”2

Cybersecurity is perceived as the second highest source of risk for enterprises, losing out to regulatory concerns, notes Gartner.3 While today only one in 10 board of directors have a dedicated cybersecurity committee, Gartner projects that percentage will rise to 40% in four years.

One reason why cybersecurity hasn’t been elevated to an ongoing board concern previously is that many executives lack a window into the cybersecurity in their midst. And lacking a window, they have no keen understanding of their organization’s vulnerabilities. Which also makes it difficult to assess the operational value of various cybersecurity investments.

The ability to gain visual insights and predictive assessments of your security posture against dangerous threats is what generates actionable intelligence. A CISO or CSO should be able to look at a single screen and understand in minutes how well protected they are against potential threats. They also need a team that’s ready to take action on these insights and enact appropriate countermeasures to protect corporate assets from imminent attack.

3. Eliminate Headaches

You want to protect your palace from thieves, but when do you finally have too many latches, locks, and bars on your doors? At some point, less is more, particularly if you can’t remember where you put your keys. Consolidation is one of Gartner top five trends this year. Four out of five companies plan to trim their list of cybersecurity vendors in the next three years.4

In fact, Gartner’s 2020 CISO Effectiveness Survey found that 78% of CISOs have 16 or more tools in their cybersecurity vendor portfolio, while 12% have a whopping 46 or more.5 Mind you, we know there is no end-all, be-all Security vendor who does everything. But with our Device-to-Cloud Suites, your security technology resides in one umbrella platform. Without McAfee, you’d need one vendor on the desktop, another in the cloud, and one more on the web gateway.

Consolidation is intended to remove headaches rather than create them. With one SaaS-based suite that addresses your core security issues, you have lower maintenance, plus the ability to visualize where you’re vulnerable and learn what you need to do to protect it.

We’re Here to Help

McAfee is here to help organizations manage the transformation to a predictive cybersecurity defense and we provide the footprint to secure the data, endpoints, web, and cloud. From my vantage point, securing distributed digital assets demands effective security controls from device to cloud.

MVISION Device-to-Cloud Suites provide a simplified way to help accelerate your cloud transformation and adoption, better defend against attacks, and lower your total cost of operations. The suites scale with your security needs to deliver a unified endpoint, web, and cloud solution.

Learn More About McAfee Device-to-Cloud Suites:

 

Source:

1. Gartner Identifies Top Security and Risk Management Trends for 2021 (Gartner)

https://www.gartner.com/en/newsroom/press-releases/2021-03-23-gartner-identifies-top-security-and-risk-management-t

2. Why SolarWinds-SUNBURST is a Wakeup Call (McAfee)

https://www.mcafee.com/blogs/other-blogs/executive-perspectives/why-solarwinds-sunburst-is-a-wake-up-call/

3. Gartner Identifies Top Security and Risk Management Trends for 2021 (Gartner)

https://www.gartner.com/en/newsroom/press-releases/2021-03-23-gartner-identifies-top-security-and-risk-management-t

4. Ibid.

5. Gartner Survey Reveals Only 12% of CISOs Are Considered “Highly Effective” (Gartner)

https://www.gartner.com/en/newsroom/press-releases/2020-09-17-gartner-survey-reveals-only-12-percent-of-cisos-are-considered-highly-effective

The post Transforming to a Predictive Cyber Defense appeared first on McAfee Blogs.

What is Roblox and is It Safe for Kids?

By Toni Birdsong

If you have a tween or teen, you’ve likely heard a lot of excited chatter about Roblox. With a reported 150 million users, there’s a good chance your child has the Roblox site on their phone, tablet, PC, or Xbox. In fact, in 2020, Roblox estimated that over half of kids in the U.S. under 16 had used the forum. However, as with all digital destinations, the fun of Roblox is not without some safety concerns.  

Why do kids love Roblox? 

Roblox is an online gaming forum (not an app or game as one might assume) where users can create and share games or just play games. Kids can play Roblox games with friends they know or join games with unknown players. Roblox hosts an infinite number of games (about 20 million), which makes it a fun place to build and share creations, chat, and make friends. Game creators can also make significant money if their games take off.  

A huge component of Roblox is its social network element that allows users to chat and have meetups. During quarantine, Roblox added its own private space for users to host virtual private birthday parties and social gatherings. 

Is Roblox safe for kids? 

Like any site or app, Roblox is safe if you take the time to optimize parental controls (both in-forum and personal software), monitor your child’s use, and taking basic precautions you’re your child starts using the forum. Especially with kids drawn to gaming communities, it’s important to monitor conversations they can be having with anyone, anywhere.  

Potential Safety Issues  

  • Connections with strangers. Like other popular apps and sites, users have reported predators on Roblox and there’s a concern about the forum’s easily accessible chat feature bad actors may use to target their victims. Too, there’s a “Chat & Party” window on nearly every page of the site that any user can access.  

Roblox security tip: Adjust settings to prohibit strangers’ from friending an account. Consider watching your child play a few games and how he or she interacts or wanders through the app. Pay close attention to the chat feature. Keep the conversation open, so your child feels comfortable sharing online concerns with you.

  • Potential cyberbullying. Users can join almost any game at any time, which opens the door to possible cyberbullying. Roblox security tip: Adjust settings to block mature games and talk with kids about handling inappropriate chats, live conversations, and comments. Also, know where to report bullying or any other rule violation on the forum.  
     
  • Inappropriate content. Because Roblox game content is user-generated, game content can range from harmless and cute to games containing violent and sexual storylines or characters, according to reports. Roblox security tip: Adjust settings to block mature games. Commit to constant monitoring to ensure settings are intact. Ask your child about their favorite games and evaluate the content yourself. 
     
  • In-app currency. Robux is the platform’s in-app currency kids can use to purchase accessories games such as pets, clothes, and weapons for different. As we’ve noted in the past, kids can rack up some hefty charges when in-app currency is allowed. Roblox Security Tip: Set limits with kids on purchases or adjust Roblox settings to prohibit in-app purchases.  

Additional Roblox Security

If you have your child’s login information, you can easily view their activity history in a few vulnerable areas including private and group chats, friends list, games played, games created, and items purchased. It’s also a good idea to make sure their birthdate is correct since Roblox automatically filters chats and game content for users under 13. Roblox has a separate login for parents of younger kids that allows you to go in and view all activities.  

As always, the best way to keep your child safe on Roblox or any other site or app is to take every opportunity for open, honest conversation about personal choices and potential risks online. Oh, and sitting down to play their favorite games with them — is always the best seat in the house.  

The post What is Roblox and is It Safe for Kids? appeared first on McAfee Blogs.

White House Executive Order – Removing Barriers to Sharing Threat Information

By Jason White

The latest guidance in the Executive Order on Improving the Nation’s Cybersecurity (EO), Section 2, discusses removing the barriers to sharing threat information. It describes how security partners and service providers are often hesitant or contractually unable to share information about a compromise. The EO helps ensure that security partners and service providers can share intelligence with the government and requires them to share certain breach data with executive level departments and agencies responsible for investigating and remediating incidents, namely CISA, the FBI, and the IC.  This approach will enable better comprehensive threat visibility across the Executive Branch departments and agencies to promote early detection and coordinated response actions. Indeed, the threat information sharing section will help enhance the public-private sector partnership that McAfee, and our colleagues in the cyber security industry are committed to supporting.  To achieve this goal the EO requires:

  • Elimination of contractual barriers that limit sharing across agencies through FAR modifications
  • The expansion of log retention
  • Mandatory reporting requirements for government technology and service partners
  • Standards-based incident sharing
  • Collaboration with investigative agencies on potential or actual incidents.

The EO is a positive first step towards improving incident awareness at a macro level, though the EO would be even more impactful if it pushed government agencies to share more threat information with the private sector. The U.S. government represents an incredibly large attack surface and being able to identify threats early in one agency or department may very well serve to protect other agencies by enabling stronger predictive and more proactive defenses.  While a government-built threat intelligence data lake is a critical first step, I think a logical next step should be opening the focus of threat intelligence sharing to be both real-time and bi-directional.

The EO focuses on the need for the private sector to improve its information sharing and collaboration with the government. However, the guidance is focused more on “post-breach” and unidirectional threat sharing.  Real-time, not just “post-breach,” threat sharing improves the speed and effectiveness of countermeasures and early detection.  Bi-directional data sharing opens possibilities for things like cross-sector environmental context, timely and prescriptive defensive actions, and enhanced remediation and automation capabilities.  Harnessing real-time sector-based threat intelligence is not a unique concept; companies like McAfee have started to deliver on the promise of predictive security using historical threat intelligence to guide proactive security policy decision making.

Real-time threat sharing will make one of the EO’s additional goals, Zero Trust, ultimately more achievable.  Zero Trust requires a dynamic analysis layer that will continuously evaluate user and device trust. As environmental variables change, so should the trust and ultimately access and authorization given. If the intent of threat intelligence sharing is to identify potentially compromised or risky assets specific to emerging campaigns, then it stands to reason that the faster that data is shared, the faster trust can be assessed and modified to protect high-value assets.

McAfee has identified the same benefits and challenges as the government for targeted threat intelligence and has developed a useful platform to enable robust threat sharing. We understand the value of sector specific data acting as an early indicator for organizations to ensure protection.  Focusing on our own threat intelligence data lakes, we deliver on the promise of sector-specific intelligence by identifying targeted campaigns and threats and then correlating those campaigns to protective measures.  As a result, government agencies now have the advantage of predicting, prioritizing, and prescribing appropriate defense changes to stay ahead of industry-focused emerging campaigns. We call that capability MVISION Insights.

This approach serves to drive home the need for collaborative shared threat intelligence. McAfee’s broad set of customers across every major business sector, combined with our threat research organization and ability to identify sector-specific targeted campaigns as they’re emerging, allows customers to benefit from threat intelligence collected from others in their same line of business. The federal government has a wide range of private sector business partners across healthcare, finance, critical infrastructure, and agriculture, to name a few. Each of these partners extends the government attack surface beyond the government-controlled boundary, and each represents an opportunity for compromise.

Imagine a scenario where an HHS healthcare partner is alerted, in real-time across a public/private sector threat intelligence sharing grid, to a threat affecting either the federal government directly or a healthcare partner for a different government agency. This approach allows them to assess their own environment for attack indicators, make quick informed decisions about defensive changes, and limit access where necessary.  This type of real-time alerting not only allows the HHS partner to better prepare for a threat, but ultimately serves to reduce the attack surface of the federal government.

Allowing industry partners to develop and participate in building out cyber threat telemetry enables:

  • Automation of the process for predicting and alerting
  • Proactively identifying emerging threats inside and across industries
  • Sharing detailed information about threats and actors (campaigns and IOCs)
  • Real-time insight and forensic investigation capabilities

The U.S. government can begin to effectively shift focus from a reactive culture to one that is more proactive, enabling faster action against threats (or something like this). In the next EO, the Administration should bulk up its commitment to sharing cyber threat information with the private sector. The capability to exchange cyber threat intelligence data across the industry in standards-based formats in near real time exists today.  The collective “we” just needs to make it a priority.

 

 

 

The post White House Executive Order – Removing Barriers to Sharing Threat Information appeared first on McAfee Blogs.

Small Businesses Save Up to 60% in McAfee and Visa Partnership

By McAfee

Small business owners are getting a special deal on their online protection through a partnership between McAfee and Visa. With new ways of working creating online opportunities and risks for small business owners, McAfee and Visa have come together to offer comprehensive protection for a changed business landscape. 

Designed to help you minimize costs and unexpected interruptions to your business, McAfee® Security for Visa cardholders provides award-winning antivirus, ransomware, and malware protection for all your company devices including PCs, smartphones, and tablets on all major platforms. Visa Small Business cardholders automatically save up to 40% with a 24-month package and up to 60% with a 12-month offer. 

Safety features include:  

  • Security for up to 25 Devices 
  • Antivirus 
  • Password Manager for up to 5 users 
  • Virtual Private Networks (VPN) for up to 5 devices 
  • Privacy Tools 

McAfee’s security savings bundle is also part of Visa’s commerce in a box initiative, which has launched in six U.S. cities (D.C., Detroit, Atlanta, Miami, Los Angeles and Chicago). This program features a curated selection of offers, discounts, and bundles from Visa’s Authorize.net and Visa partners designed to help small businesses with what they need to move their business forward digitally — from accepting digital payments and building an eCommerce site to marketing to their audience in new ways and providing online marketing tools to run and protect their business.

The post Small Businesses Save Up to 60% in McAfee and Visa Partnership appeared first on McAfee Blogs.

What is a VPN and Can it Hide My IP Address?

By McAfee

There’s a lot of misinformation about Virtual Private Networks, what they do, and the security benefits they offer. For this article, I’d like to do some myth-busting about how a VPN actually works and why you should use one. 

What is a VPN and how does it protect me? 

VPN is an app that you install on your device to help keep your personal data safe as you browse the internet  

You may have heard that VPN apps live on your device and allow you to connect to the internet securely. What that means is, when you turn your VPN app on, your device makes a secure connection to a specialized computer that routes internet traffic, called a VPN server. You also may have heard that your connection is “wrapped in an encrypted tunnel” which means your device and the server share a secure connection so only you can see what you’re doing on the internet. 

Does a VPN change my IP address? 

Every internet connection (like your cable modem) is assigned a unique set of numbers called an IP address, which is tied to information such as geographic location, ISP, etc. A VPN replaces your actual IP address to make it look like you’ve connected to the internet from a different location: the physical location of the VPN server, rather than your real location. This is just one reason why so many people use VPNs. This can be handy when you want to hide from advertising trackers or protect your search history.  

How to use a VPN to change my IP address 

To change your IP address, you simply open your VPN app, select the server location you’d like to connect to, and you’re done. You’re now browsing with a new IP address. If you’d like to make sure your IP has changed, open up a browser and search for “What’s my IP address” and click on one of the results. 

When should I use a VPN? 

When to use a VPN really depends on what you want it for. For example, 39% of users understand public Wi-Fi is unsafe but still do sensitive things, like banking or shopping on public WiFi, so using a VPN when you’re at the airport, or a café is a great use case. 

As I mentioned before, a lot of people use a VPN for privacy reasons, like stopping advertisers from tracking them. Searches you perform, or websites you visit won’t be trackable, which means you’ll be able to surprise your spouse with a vacation you researched and planned on a computer you both use. Targeted ads could spoil things if your spouse is bombarded with ads for plane tickets and hotels while they browse. 

Can a VPN protect my search history? 

A VPN protects your search history through the secure connection you share. When you search for a website, or type a URL into your navigation bar, your device sends something called a DNS request, which translates the website into the IP address of the web server; this is how your browser can find the website and serve its content to you. By encrypting your DNS requests, a VPN can hide your search habits and history from those that might use that info as part of building a profile of you. This type of info could be used in a wide variety of ways, from legitimately serving targeted ads to nefarious social engineering.  

Can a VPN protect my identity? 

A VPN can protect your identity by blocking online trackers from following you around the internet. With your VPN on, trackers will think all of your browsing is coming from a different device in a different location. This throws off the profile advertisers try to build because they think you’re someone else. 

Another way a VPN can protect your identity is by preventing some types of hacking. Stopping attacks on public WiFi where a bad actor tries to get between you and the website you’re visiting, is just one way VPNs can help. It’s called a Man-in-the-Middle attack, but that’s a subject for another article. 

Does a VPN make me anonymous? 

No, a VPN cannot make you anonymous. They help secure what you’re doing, but your ISP still knows when you’re using the internet. They just can’t see what you’re doing, what sites you visit, or how long you’ve been on a site. 

Do I need a VPN if I use Incognito mode? 

Private browsing modes can help protect your privacy, but they’re useful if you share a device with other people and you don’t want them to see your search history. You can read all about the differences in the article I wrote a little while ago. 

What is Apple Private Relay? 

Apple’s Private Relay is currently in Beta and will be available with an iCloud+ subscription for Safari users on iOS and macOS soon. Private Relay is similar to a VPN in that it changes your IP address so websites you visit can’t tell exactly where you are.  

What does Apple Private Relay do? 

When you turn Private Relay on, your device connects to a server that sends your browsing data to a second server, before it travels through the internet. The reason for the double hop is that first server gives you a new IP address, to make you harder to track, while the second server hides that information from the website you’re browsing. The first server only knows your original IP address, while the second server only knows what you’re browsing, but not your IP. 

How to turn on Apple Private Relay on iPhone 

  1. Tap the iCloud tab in Settings 
  2. Tap Private Relay to turn it On 
  3. Scroll down and tap on Turn On for Safari 
  4. Tap IP Address Location to change Approximate or Broader Location 

How to turn on Apple Private Relay on Mac 

  1. Click on iCloud in the System Preferences menu 
  2. Click on the Private Relay box 
  3. Click on the Options button 
  4. Click on Private Relay for Safari 
  5. Choose your IP Address Location to change Approximate or Broader Location 

Do I need a VPN if I have Apple Private Relay? 

Private Relay only works with Safari on iOS and macOS. Even if you are using an Apple device, a VPN is still a good idea because it will protect the information that your device sends outside of Safari. 

How to get your own VPN 

If you’re already a McAfee Total Protection subscriber, you have access to unlimited VPN usage. Protect your personal information, like your banking information and credit cards, from prying eyes with McAfee Total Protection’s Secure VPN. If you haven’t already signed up, now’s the perfect time. McAfee Total Protection provides security for all your devices, giving you peace of mind while you shop, bank, and browse online. 

What is a VPN

What is a VPN

 

The post What is a VPN and Can it Hide My IP Address? appeared first on McAfee Blogs.

Data as a Strategic Asset – Securing the New Perimeter in the Public Sector

By Patrick Greer

Every organization has data moving to the multi-cloud; digital transformation is occurring rapidly, is here to stay, and is impacting every major industry.  Organizations are working hard to adopt Zero Trust architectures as their critical information, trade secrets, and business applications are no longer stored in a single datacenter or location. As a result, there is a rapid shift to cloud resources to support dynamic mission requirements, and the new perimeter to defend is data.  At its core, Zero Trust is a data-centric model and is fundamental to what McAfee Enterprise offers.  In the Public Sector, data has now been classified as a strategic asset – often referred to as the “crown jewels” of an organization. Reinforced by the publication of the DoD Zero Trust Reference Architecture, we have arrived at a crossroads where demonstrating a sound data strategy will be a fundamental requirement for any organization.

All DoD data is an enterprise resource, meaning data requires consistent and uniform protections wherever it is created or wherever it traverses. This includes data transmitted across multi-cloud services, through custom mission applications, and on devices.  Becoming a data-centric organization requires that data be treated as the primary asset. It must also be available so that it can be leveraged by other solutions for discovery and analytics purposes.  To achieve this, interoperability and uniform data management are strategic elements that underpin many sections of DoD’s official vision of Zero Trust.

Let us dissect how the DoD plans to create a data advantage and where McAfee Enterprise can support these efforts as we explore the four essential capabilities – Architecture, Standards, Governance, and Talent & Culture:

Figure 1 – DoD Data Strategy Framework

Architecture:

McAfee Enterprise’s open architectural methodology emphasizes the efficiencies that cloud adoption and open frameworks can offer.  The ability to leverage agile development and continuously adapt to dynamic mission requirements – faster than our adversaries – is a strategic advantage.  Data protection and cloud posture, however, must not take a back seat to innovation.

The rapid pace of cloud adoption introduces new risks to the environment; misconfigurations and mistakes happen and are common. Vulnerabilities leave the environment exposed as DevOps tends to leverage open-source tools and capabilities.  Agile development introduces a lot of moving parts as applications are updated and changed at an expedited pace and based on shorter, prescriptive measures. Customers also utilize multiple cloud service providers (CSP) to fit their mission needs, so consistent and uniform data management across all the multi-cloud services is a necessity.  We are at a pivotal inflection point where native, built-in CSP protections have introduced too much complexity, overhead, and inconsistency. Our data security solution is a holistic, open platform that enforces standardized protections and visibility across the multi-cloud.

Together with our partners, we support the architecture requirements for data-centric organizations and take charge as the multi-cloud scales.  Several items – visibility and control over the multi-cloud, device-to-cloud data protection, cloud posture, user behavior and insider threat – play into our strengths while organic partner integrations (e.g., ZTNA) further bolster the Zero Trust narrative and contribute to interoperability requirements.  We are better together and can facilitate an open architecture to meet the demands of the mission.

Standards:

DoD requires proven-at-scale methods for managing, representing, and sharing data of all types, and an open architecture should be used wherever possible to avoid stovepiped solutions and facilitate an interoperable security ecosystem.  Past performance is key, and McAfee Enterprise has a long track record of delivering results, which is crucial as the DoD moves into a hybrid model of management.

Data comes in many forms, and the growth of telemetry architectures requires machines to do more with artificial intelligence and machine learning to make sense of data.  How do we share indicators of compromise (IoCs) so multiple environments – internal and external – can leverage intelligence from other organizations?  How do we share risks in multi-clouds and ensure data is secured in a uniform manner?  How do we weaponize intelligence to shift “left of boom” and eliminate those post-compromise autopsies?  Let’s explore how McAfee Enterprise supports data standards.

Made possible by Data Exchange Layer (DXL) and a strategic partner, the sharing of threat intelligence data has proven successful.  Multiple environments participate in a security-connected ecosystem where an “attack against one is an attack against all” and advanced threats are detected, stopped, and participants are inoculated in near real-time.  This same architecture scales to the hybrid cloud where the workloads in cloud environments can benefit from broad coverage.

Furthermore, DXL was built as open source to foster integrations and deliver cohesive partner solutions to promote interoperability and improve threat-informed intelligence.  All capabilities speak the same language, tip and cue, and provide much greater return on investment. Consider the sharing of cloud-derived threats.  No longer should we be limited to traditional hashes or IoCs. Perhaps we should share risky or malicious cloud services and/or insider threats.  Maybe custom-developed solutions should leverage our MVISION platform via API to take advantage of the rich global telemetry and see what we see.

Our global telemetry is unmatched and can be leveraged to organizations’ advantage to proactively fortify the device-to-cloud environment, effectively shifting security to the “left” of impact. This is all done through the utilization of MVISION Insights.  Automated posture assessments pinpoint where potential gaps in an organization’s countermeasures may exist and provide the means to take proactive action before it is hit.  Through MVISION Insights, cyber operators can learn about active global campaigns, emerging threats, and whether an organization is in the path – or even the target.  Leadership can grasp the all-important risk metric and deliver proof that the security investments are working and operational.  Combined with native MITRE ATT&CK Framework mappings – an industry standard being mapped across our portfolio – this proactive hardening is a way we use threat telemetry to customers’ advantage.

Standardized data protection, end-to-end, across all devices and multi-cloud services is a key tenant of the DoD Data Strategy.  Protecting data wherever it lives or moves, retaining it within set boundaries and making it available to approved users and devices only, and enforcing consistent controls from a single, comprehensive solution spanning the entire environment is the only data security approach.  This is what Unified Cloud Edge (UCE) does. This platform’s converged approach is tailored to support DoD’s digital transformation to the multi-cloud and its journey to a data-centric enterprise.

Governance:

DoD’s data governance element is comprised of the policies, procedures, frameworks, tools, and metrics to ensure data is managed at all levels, from when it is created to where it is stored.  It encompasses increased data oversight at multiple levels and ensures that data will be integrated into future modernization initiatives.  Many organizations tend to be driven by compliance requirements (which typically outweigh security innovation) unless there is an imminent mission need; we now have the compliance requirement.  Customers will need to demonstrate a proper data protection and governance strategy as multi-cloud adoption matures.  What better way to incorporate Zero Trust architectures than by leveraging UCE?  Remember, this is beyond the software defined perimeter.

McAfee Enterprise can monitor, discover, and analyze all the cloud services leveraged by users – both approved and unapproved (Shadow IT) – and provide a holistic assessment.  Closed loop remediation ensures organizations can take control and govern access to the unapproved or malicious services and use the information to lay the foundation for building effective data protection policies very relevant to mission needs.

Granular governance and control – application-level visibility – by authenticated users working within the various cloud services is just as important as controlling access to them.  Tight API integrations with traditional SaaS services guarantee only permitted activities occur.  With agile development on the rise, it is just as important that the solution is flexible to control these custom apps in the same way as any commercial cloud service.  Legacy mission applications are being redesigned to take advantage of cloud scale and efficiency; McAfee Enterprise will not impose limits.

Governance over cloud posture is equally important, and customers need to ensure the multi-cloud environment is not introducing any additional source of risk.  Most compromises are due to misconfigurations or mistakes that leave links, portals, or directories open to the public.  We evaluate the multi-cloud against industry benchmarks and best practices, provide holistic risk scoring, and provide the means to remediate these findings to fortify an organization’s cloud infrastructure.

Unified data protection is our end goal; it is at the core of what we do and how we align to Zero Trust.  Consistent protections and governance over data wherever it is created, wherever it goes, from device to multi-cloud.  The same engine is shared across the environment and provides a single place for incidents and management across the enterprise.  Customers can be confident that all data will be tracked and proper controls enforced wherever its destination may be.

Talent and Culture:

Becoming a data-centric organization will require a cultural change.  Decision-making capabilities will be empowered by data and analytics as opposed to experienced situations and scenarios (e.g., event response). Machine learning and artificial intelligence will continue to influence processes and procedures, and an open ecosystem is needed to facilitate effective collaboration. Capabilities designed to foster interoperability and collaboration will be the future.  As more telemetry is obtained, solutions must support the SOC analyst with reduced noise and provide relevant, actionable data for swift decision-making.

At McAfee Enterprise, we hear this.  UCE provides simplified management over the multi-cloud to ensure consistent and unified control over the environment and the data.  No other vendor has the past performance at scale for hybrid, centralized management.  MVISION Insights ensures that environments are fortified against emerging threats, allowing the cyber operators to focus on the security gaps that can leave an organization exposed.  Threat intelligence sharing and an open architecture has been our priority over the past several years, and we will continue to enrich and strengthen that architecture through our platform approach.  There is no silver bullet solution that will meet every mission requirement, but what we can collectively do is ensure we are united against our adversaries.

Data and Zero Trust will be at the forefront as we move forward into adopting cloud in the public sector.  There is a better approach to security in this cloud-first world. It is a mindset change from the old perimeter-oriented view to an approach based on adaptive and dynamic trust and access controls.  McAfee’s goal is to ensure that customers can support their mission objectives in a secure way, deliver new functionality, improved processes, and ultimately give better return on investments.

We are better together.

The post Data as a Strategic Asset – Securing the New Perimeter in the Public Sector appeared first on McAfee Blogs.

Hyperautomation and Cybersecurity – A Platform Approach to Telemetry Architectures

By Patrick Greer

Hyperautomation is a process where artificial intelligence (AI), machine learning (ML), event-driven software, and other tools are used to automate as many business and IT processes as possible.  Forecasted by Gartner to reach $596.6 billion by 20221, hyperautomation and the global software market that enables it show no signs of slowing.

The myriad of technologies used by a typical organization often are not integrated and exist as siloed disparate tools.  Hyperautomation aims to reduce this “organizational debt” to improve value and brand.  In the context of cybersecurity, a patchwork of stovepipe solutions not only exposes the environment to risk, but also impacts the cyber defender’s ability to fortify the environment and respond to threats at machine speed.  Our target is “shift-left” security — leveraging intelligence to enhance predictability and encourage proactive responses to cyber threats.

The rise of telemetry architectures, combined with cloud adoption and data as the “new perimeter,” pose new challenges to cybersecurity operations.  Organizations will be forced to contend with increased “security debt” unless we figure out how to optimize, connect, and streamline the solutions.  In some cases, we have technologies available to begin this journey (MVISION Insights, MVISION Extended Detection and Response (XDR), MVISION API).  In others, our customers demand more.  They challenge us to build next-generation platforms to see themselves, see their cyberspace, and understand their cyberspace.  Some cyber defenders need more than traditional cyber threat intelligence telemetry to make critical operational impact decisions.

MVISION Insights and MVISION XDR are great starts.  It all begins with the build-up of an appropriate telemetry architecture, and McAfee Enterprise’s billion-sensor global telemetry is unmatched.  Insights provides an automated means to fortify the environment against emerging threats, weaponizing threat intelligence to take a proactive stance in reducing your attack surface from device to cloud.  Why start engaging at an attack’s point of impact when an organization can begin its own awareness at the same point an attacker would?  MVISION XDR brings together the fragmented security solutions accumulated over the years, sharing information and coordinating actions to deliver an effective, unified response across every threat vector.  Workflows are effortless to orchestrate.  The powerful combination of Insights and XDR provides management and visibility of the complete attack lifecycle.  Open architectures reinforce our belief that we are better together and facilitate a cybersecurity ecosystem consistent with the concepts of hyperautomation enablement.

Figure 1 – Attack Lifecycle

Where can we go from here?  How do we secure tomorrow?  From my perspective, we should expand the definition and scope of cybersecurity.

The answer is to look beyond traditional cyber threat telemetry; external factors (environmental, social media, geolocation, law enforcement, etc.) truly matter and are vital in making business impact decisions.  Complete operational visibility, and the ability to investigate, research, and rationalize what matters most to make accurate, critical judgments, is the missing link.  This is a Cyber Common Operating Picture (COP).  A natural extension of our current initiatives within the industry, a COP answers the growing need to provide an integrated cyber defender’s visualization workbench that manages multiple data telemetry sources (beyond cyber threats) and delivers our customers wisdom – a true understanding – regarding their cyberspace on a local, regional, and global scale.

Telemetry data represents change, and telemetry architectures will require new forms of advanced analytics, AI, and ML to make sense of the vast sea of all-source intelligence flowing in from the environment to enhance observations and take definitive action.  If we can “shift-left” for cyber threats, we can leverage that same predictability to identify and prepare for the impact of peripheral threats.  Open source, custom, and third-party data feeds are widely available and create integration opportunities with emerging markets and capabilities to solve unique challenges typically not associated with our platform:

  • How do we identify network or infrastructure hardware (IoT, OT, Industrial Control System) that is on the brink of failing?
  • Can we identify the exact geolocation from which a current cyber-attack is being launched?
  • Does social media and law enforcement chatter indicate a physical threat could be imminent near our headquarters?
  • How do we fuse/correlate inputs from myriad sources to develop regional situational awareness in all layers of cyberspace?

Non-traditional sensor telemetry, a multitude of feeds, and threat intelligence must be overlayed across the Cyber COP to provide AI-driven predictability modeling for next-gen systems and actionable conclusions.  This is a potential future for how hyperautomation can impact cybersecurity; this is orchestrating beyond standard capabilities and expanding the definition and scope of how our complex environments are secured.  AI engineering strategies will continue to expand and deliver data analytics at machine speeds.

McAfee Enterprise has always been a proponent of a platform approach to cybersecurity, creating interoperability and extending the security investments its customers have made. Loosely coupled security systems introduce gaps, and hyperautomation aims to solve that at a much larger scale.  As we look toward the future, we can collectively build the requirements for the next generation of security solutions and broaden the scope of how we defend against our common adversaries. I am confident that the technologies currently exist to provide the framework(s) of a COP solution for enhanced cyber situational awareness.

 

Source: 1Gartner Press Release: Gartner Forecasts Worldwide Hyperautomation-Enabling Software Market to Reach Nearly $600 Billion by 2022 (April 28, 2021)

 

The post Hyperautomation and Cybersecurity – A Platform Approach to Telemetry Architectures appeared first on McAfee Blogs.

See Ya Sharp: A Loader’s Tale

By Max Kersten

Introduction

The DotNet based CyaX-Sharp loader, also known as ReZer0, is known to spread commodity malware, such as AgentTesla. In recent years, this loader has been referenced numerous times, as it was used in campaigns across the globe. The tale of CyaX-Sharp is interesting, as the takeaways provide insight into the way actors prefer to use the loader. Additionally, it shines a light onto a spot that is not often illuminated: the inner workings of loaders.

This blog is split up into several segments, starting with a brief preface regarding the coverage of loaders in reports. After that, the origin of the loader’s name is explored. Next, the loader’s capabilities are discussed, as well as the automatic extraction of the embedded payload from the loader. Lastly, the bulk analysis of 513 unique loader samples is discussed.

Loaders and their Coverage in Blogs

To conceal the malware, actors often use a loader. The purpose of a loader is, as its name implies, to load and launch its payload, thereby starting the next stage in the process. There can be multiple loaders that are executed sequentially, much like a Russian Matryoshka doll in which the smallest doll, which is hidden inside numerous others, is the final payload. The “smallest doll” generally contains the malware’s main capabilities, such as stealing credentials, encrypting files, or providing remote access to the actor.

While there is a lot of research into the actions of the final payload, the earlier stages are just as interesting and relevant. Even though the earlier stages do not contain the capabilities of the malware that is eventually loaded, they provide insight as to what steps are taken to conceal the malware. Blogs generally mention the capabilities of a loader briefly, if at all. The downside here lies in the potential detection rules that others can create with the blog, as the focus is on the final step in the process, whereas the detection should start as soon as possible.

Per best security practices, organizations should protect themselves at every step along the way, rather than only focusing on the outside perimeter. These threat models are often referred to as the, respectively, onion and egg model. The egg’s hard shell is tough to break, but once inside, an attacker has free roam. The onion model opposes the attacker every step of the way, due to its layered approach. Knowing the behavior of the final payload is helpful to detect and block malware although, ideally, the malware would be detected as early on as possible.

This blog focuses on one specific loader family, but the takeaways are valid in a broader sense. The preferred configurations of the actors are useful to understand how loaders can be used in a variety of attacks.

Confusing Family Names

A recent blog by G Data’s Karsten Hahn provides a more in-depth look into malware families ambiguous naming schemes. This loader’s name is also ambiguous, as it is known by several names. Samples are often named based on distinctive characteristics in them. The name CyaX-Sharp is based upon the recurring string in samples. This is, however, exactly why it was also named ReZer0.

When looking at the most used names within the 513 obtained samples, 92 use CyaX-Sharp, whereas 215 use ReZer0. This would make it likely that the loader would be dubbed ReZer0, rather than CyaX-Sharp. However, when looking at the sample names over time, as can be seen in the graph below, the reason why CyaX-Sharp was chosen becomes apparent: the name ReZer0 was only introduced 8 months after the first CyaX-Sharp sample was discovered. Based on this, McAfee refers to this loader as CyaX-Sharp.

Within the settings, one will find V2 or V4. This is not a reference of the loader’s version, but rather the targeted DotNet Framework version. Within the sample set, 62% of the samples are compiled to run on V4, leaving 38% to run on V2.

The Loader’s Capabilities

Each version of the loader contains all core capabilities, which may or may not be executed during runtime, based on the loader’s configuration. The raw configurations are stored in a string, using two pipes as the delimiting value. The string is then converted into a string array using said delimiter. Based on the values at specific indices, certain capabilities are enabled. The screenshots below show, respectively, the raw configuration value, and some of the used indices in a sample (SHA-256: a15be1bd758d3cb61928ced6cdb1b9fa39643d2db272909037d5426748f3e7a4).

The loader can delay its execution by sleeping for a certain number of seconds, use a mutex to ensure it is not already running, display a message box with a custom message, persist itself as a scheduled task, and/or execute a given payload in several ways. The payload can be downloaded from an external location, after which it is started. Alternatively, or additionally, the embedded payload within the loader can be launched. This can be done directly from the loader’s memory with the help of reflective calls, or by hollowing a newly created process. The flowchart below visualizes the process. Note that the dotted line means the linked step can be skipped, depending on the loader’s configuration.

Process Hollowing

The newly created process is one of the following: MSBuild.exe, vbc.exe, RegSvcs.exe, or a new instance of the loader. The process hollowing code segment seems to be taken from NYAN-x-CAT’s GitHub, as the for-loop to start the process hollowing method is present in both the loader and the linked repository. The way an error is handled is not a standardized method, making the link between the publicly available code very likely. The first image below shows the original code from the repository, whereas the second image shows the code from the loader (SHA-256: a15be1bd758d3cb61928ced6cdb1b9fa39643d2db272909037d5426748f3e7a4)

The loop calls the process hollowing function several times to more easily handle exceptions. In the case of an exception during the process hollowing, the targeted process is killed and the function returns. To try several times, a loop is used.

Changes Over Time

Even though the loader has changed over time, it maintained the same core structure. Later versions introduced minor changes to existing features. Below, different loader versions will be described, where the length of the string array that contains the loader’s configuration is used to identify different versions. The graph shows the rise and fall for each of the versions.

There are two notable differences in versions where the config array’s size is larger than 29. Some specific samples have slightly different code when compared with others, but I did not consider these differences sizable enough to warrant a new version.

Firstly, the ability to enable or disable the delayed execution of a sample. If enabled, the execution is delayed by sleeping for a predefined number of seconds. In config_29, the delay functionality is always enabled. The duration of the delay is based on the System.Random object, which is instantiated using the default seed. The given lower and upper limits are 45,000 and 60,000, resulting in a value between these limits, which equals in the number of milliseconds the execution should be delayed.

Secondly, the feature to display a custom message in a prompt has been added. The config file contains the message box’ title, text, button style, and icon style. Prompts can be used to display a fake error message to the victim, which will appear to be legitimate e.g.  43d334c125968f73b71f3e9f15f96911a94e590c80955e0612a297c4a792ca07, which uses “You do not have the proper software to view this document” as its message.

Payload and Configuration Extraction

To automatically extract the payload and configuration of a given loader, one can recreate the decryption mechanism in a language of choice, get the encrypted data from the loader, and decrypt it. The downside here is the need for an exact copy of the decryption mechanism. If the key were to change, or a slightly different algorithm were to be used, the copy would also need to reflect those changes. To avoid dealing with the decryption method, a different approach can be taken.

This loader mistakenly uses static variables to store the decrypted payload and configuration in. In short, these variables are initialized prior to the execution of the main function of the loader. As such, it is possible to reflectively obtain the value of the two variables in question. A detailed how-to guide can be found on my personal website. The data that was extracted from the 513 samples in the set is discussed in the next section.

Bulk Analysis Results

The complete set consists of 513 samples, all of which were found using a single Yara rule. The rule focuses on the embedded resource which is used to persist the loader as a scheduled task on the victim’s system. In some cases, the Yara rule will not match a sample, as the embedded resource is obfuscated using ConfuserEx (one example being SHA-256 0427ebb4d26dfc456351aab28040a244c883077145b7b529b93621636663a812). To deobfuscate, one can use ViRb3’s de4dot-cex fork of de4dot. The Yara rule will match with the deobfuscated binary. The graph below shows the number of unique samples over time.

The dates are based on VirusTotal’s first seen date. Granted, this date does not need to represent the day the malware was first distributed. However, when talking about commodity malware that is distributed in bulk, the date is reliable enough.

The sample set that was used is smaller than the total amount of loaders that have been used in the wild. This loader is often not the first stage, but rather an in-memory stage launched by another loader. Practically, the sample set is sizable enough for this research, but it should be noted that there are more unique loader samples in the wild for the given date range than are used in this report.

It is useful to know what the capabilities of a single sample are, but the main area of interest of this research is based upon the analysis of all samples in the set. Several features will be discussed, along with thoughts on them. In this section, all percentages refer to the total of 513 unless otherwise specified.

Widespread Usage

The loader’s usage is widespread, without a direct correlation towards a specific group or geographical region. Even though some reports mention a specific actor using or creating this loader, the fact that at least one builder has leaked makes attribution to one or more actors difficult. Coupled with the wide variety of targeted industries, as well as the broad geographic targeted areas, it looks like several actors utilise this loader. The goal of this research is not to dig into the actors who utilise this loader, but rather to look at the sample set in general. Appendix A provides a non-exhaustive list of public articles that (at least) mention this loader, in descending chronological order.

Execution Methods

The two options to launch a payload, either reflectively or via process hollowing, are widely apart in usage: 90% of all loaders uses process hollowing, whereas only 10% of the samples are launched via reflection. Older versions of the loader sometimes used to reflectively load a decrypted stager from the loader’s resources, which would then launch the loader’s payload via process hollowing. The metrics below do not reflect this, meaning the actual percentage of direct launches might be slightly lower than is currently stated. The details can be viewed in the graph below.

Note that the reflective loading mechanism will default to the process hollowing of a new instance of the loader if any exception is thrown. Only DotNet based files can be loaded reflectively, meaning that other files that are executed this way will be loaded using a hollowed instance of the loader.

Persistence and Mutexes

The persistence method, which uses a scheduled task to start the loader once the computer boots, is used by 54% of the loaders. This does not mean that the other 46% of the samples are not persisted on the victim’s machine, as a different stage could provide persistence as well. Notable is the date within the scheduled task, which equals 2014-10-25T14:27:44.8929027. This date is, at the time of writing, nearly 2500 days ago. If any of the systems in an organization encounter a scheduled task with this exact date, it is wise to verify its origin, as well as the executable that it points to.

A third of all loaders are configured to avoid running when an instance is already active using a mutex. Similar to the persistence mechanism, a mutex could be present in a different stage, though this is not necessarily the case. The observed mutexes seem to consist of only unaccented alphabetical letters, or [a-zA-Z]+ when written as a regular expression.

Delayed Execution

Delayed execution is used by nearly 37% of the samples, roughly half of which are config_29, meaning this setting was not configurable when creating the sample. The samples where the delayed execution was configurable, equal nearly 19% of the total. On average, a 4 second delay is used. The highest observed delay is 600 seconds. The graph below shows the duration of the delay, and the frequency.

Note that one loader was configured to have a delay of 0 seconds, essentially not delaying the execution. In most cases, the delayed time is a value that can be divided by five, which is often seen as a round number by humans.

Environmental Awareness

Prior to launching the payload, the loader can perform several checks. A virtual environment can be detected, as well as a sandbox. Roughly 10% of the samples check for the presence of a virtual machine, whereas roughly 11% check if it is executed in a sandbox. Roughly 8% of the 513 samples check for the presence of both, prior to continuing their execution. In other words, 88% of the samples that try to detect a virtual machine, also attempted to detect a sandbox. Vice versa, 74% of the samples that attempted to detect the sandbox, attempted to detect if they were executed on a virtual machine.

The option to disable Windows Defender was mainly present in the earlier samples, which is why only 15% of the set attempts to disable it.

Payload Families

The loader’s final goal is to execute the next stage on the victim’s machine. Knowing what kind of malware families are often dropped can help to find the biggest pain points in your organization’s additional defensive measures. The chart below provides insight into the families that were observed the most. The segment named other contains all samples that would otherwise clutter the overview due to the few occurrences per family, such as the RedLine stealer, Azorult, or the lesser known MrFireMan keylogger.

The percentages in the graph are based on 447 total payloads, as 66 payloads were duplicates. In other words, 66 of the unique loaders dropped a non-unique payload. Of all families, AgentTesla is the most notable, both in terms of frequency and in terms of duplicate count. Of the 66 duplicates, 48 were related to AgentTesla.

Barely Utilized Capabilities

Two functions of the loader that are barely used are the message box and the download of a remote payload. The usage of both is, respectively, 1.3% and 0.8%. All of the remote payloads also contained an embedded payload, although one of the four remotely fetching loaders does not contain a URL to download the remote payload from. The external file can be used as an additional module for a next stage, a separate malicious payload, or it can be used to disable certain defense mechanisms on the victim’s device.

Conclusion

Companies using the aforementioned onion security model benefit greatly from the dissection of such a loader, as their internal detection rules can be improved with the provided details. This stops the malware’s execution in its tracks, as is shown in the sequential diagram of McAfee’s detection below.

The techniques that this loader uses are commonly abused, meaning that the detection of a technique such as process hollowing will also prevent the successful execution of numerous other malware families. McAfee’s Endpoint Security (ENS) and Endpoint Detection & Response (EDR) detect the CyaX-Sharp loader every step of the way, including the common techniques it uses. As such, customers are protected against a multitude of families based on a program’s heuristics.

Appendix A – Mentions of CyaX-Sharp and ReZer0

Below, a non-exhaustive chronologically descending list of relevant articles is given. Some articles contain information on the targeted industries and/or target geographical area.

  • On the 12th of January 2021, ESET mentioned the loader in its Operation Spalax blog
  • On the 7th of December 2020, ProofPoint wrote about the decryption mechanisms of several known .NET based packers
  • On the 5th of November 2020, Morphisec mentioned a packer that looks a lot like this loader
  • On the 6th of October 2020, G Data mentioned the packer (or a modified version)
  • On the 29th of September 2020, ZScaler mentioned the packer
  • On the 17th of September 2020, I wrote about the automatic payload and config extraction of the loader
  • On the 16th of September 2020, the Taiwanese CERT mentioned the loader in a digital COVID-19 threat case study
  • On the 23rd of July 2020, ClamAV mentioned the loader in a blog
  • On the 14th of May 2020, Security firm 360TotalSecurity links the loader to the threat actor Vendetta
  • On the 21st of April 2020, Fortinet provided insight into the loader’s inner workings
  • On the 1st of March 2020, RVSEC0N mentioned the loader
  • On the 4th of December 2019, Trend Micro provided a backstory to CyaX-Sharp
  • On the 22nd of March 2019, 360TotalSecurity gave insight into some of the loader’s features

Appendix B – Hashes

The hashes that are mentioned in this blog are listed below, in order of occurrence. The SHA-1 and SSDeep hashes are also included. A full list of hashes for all 513 samples and their payloads can be found here.

Sample 1

SHA-256: a15be1bd758d3cb61928ced6cdb1b9fa39643d2db272909037d5426748f3e7a4

SHA-1: 14b1a50c94c2751901f0584ec9953277c91c8fff

SSDeep: 12288:sT2BzlxlBrB7d1THL1KEZ0M4p+b6m0yn1MX8Xs1ax+XdjD3ka:O2zBrB7dlHxv0M4p+b50yn6MXsSovUa

Sample 2

SHA-256: 43d334c125968f73b71f3e9f15f96911a94e590c80955e0612a297c4a792ca07

SHA-1: d6dae3588a2a6ff124f693d9e23393c1c6bcef05

SSDeep: 24576:EyOxMKD09DLjhXKCfJIS7fGVZsjUDoX4h/Xh6EkRlVMd3P4eEL8PrZzgo0AqKx/6:EyycPJvTGVijUDlhfEEIUvEL8PrZx0AQ

Sample 3

SHA-256: 0427ebb4d26dfc456351aab28040a244c883077145b7b529b93621636663a812

SHA-1: 8d0bfb0026505e551a1d9e7409d01f42e7c8bf40

SSDeep: 12288:pOIcEfbJ4Fg9ELYTd24xkODnya1QFHWV5zSVPjgXSGHmI:EEj9E/va

 

The post See Ya Sharp: A Loader’s Tale appeared first on McAfee Blogs.

New Company, Same Commitment: Channel First

By Kathleen Curry

In the last week there has been change, but a lot remains the same, too. First, we are now McAfee Enterprise, a pure-play enterprise cybersecurity company under the new ownership of Symphony Technology Group (STG). It’s an exciting change and true focus for our company, allowing us to concentrate on enterprise and commercial business needs. Our partners are an important part of our journey, and together we are excited to continue to win and drive success.

As we start this chapter as a pure-play enterprise security company, my focus is on adding value for our partners at all levels, ensuring our joint customers understand the power of our technology portfolio, and driving profitability and growth through better cybersecurity outcomes for our customers.

Our strategy continues to be Channel First, and we have worked to create continuity in all that we do for our channel partners and customers through the transition. That means our operations as a company will remain very much the same, so there will be no new systems or tools to learn, and our partners will continue to receive the same program benefits. At the same time, we will continue to evaluate and enhance program benefits, enablement and sales engagement.

We look forward to embarking on this journey with our partners as McAfee Enterprise. Our vision cannot be achieved without our partners’ trust and confidence in us.

 

The post New Company, Same Commitment: Channel First appeared first on McAfee Blogs.

McAfee NSP Provides Superior Security and Performance

By McAfee Enterprise

McAfee Enterprise is pleased to announce that the Network Security Platform (NSP), our industry leading next-gen Intrusion Prevention System (IPS) solution, has been awarded Miercom Certified Secure for superior security and performance.

About Miercom

Miercom has been reviewing network products for over 30 years, forming standardized test programs that have grown into a worldwide evaluation service for the latest technology.  Miercom has published hundreds of network product analyses in leading trade periodicals and other publications, thus gaining the reputation of being a leading, independent product test center.

About the Testing

The NSP Next Generation Intrusion Prevention System (NGIPS) solution was independently assessed by Miercom engineers for security, performance, and hands-on use to provide unbiased verification of McAfee Enterprise’s unique qualities.  The NGIPS solution was deployed in a real-world environment and subject to performance tests, multiple iterations of attacks from Miercom’s proprietary malware suite, and exploits from Ixia BreakingPoint and other test tools.

Figure 1. Test Bed Diagram

Figure 2. Test Tools

 

Results

NSP demonstrated security effectiveness in the attack lifecycle detection and protection through its efficient signature engine along with multiple advanced signature-less detection technologies, including file analysis, protocol behavior analysis, and network behavior analysis. The results not only showed NSP continued to hold the highest standard in exploit prevention capability, but also proved its advantage in zero-day malware and malicious URL protection compared to other IPS solutions in the market.

“Based on our findings, the McAfee Network Security Platform with NS9500 sensors demonstrates competitively superior security and performance.  The McAfee solution was stressed under real-world known and not yet discovered exploits and heavily loaded conditions and passed these tests with ease.  McAfee Network Security Platform has rightfully earned the distinction as Miercom Certified Secure.” – Rob Smithers, CEO, Miercom 

Key Findings

  • Prevented 98.7% of malware from Miercom’s Enterprise Critical Protect Malware Set consisting of compound threats, zero-day threats and ransomware (outperforming the industry average by 25%)
  • Detected 97.8% malicious URLs over HTTP with recommended default configuration (outperforming the competitive industry average by 44%)
  • Detected 100% of malicious URLs over HTTP with optimized settings (outperforming the competitive industry average by 47%)
  • Proved effective URL filtering by detecting 100% of blacklisted URLs
  • Prevented 100% of evasive malicious traffic and exploits mounted with mutated traffic

About McAfee NSP

McAfee Enterprise’s new appliance offerings, NS9500 and NS7500, are scalable hardware platforms that provide investment protection. They offer multiple throughput options with the inspection throughput being controlled by a software license. This provides customers the flexibility to only buy capacity that is needed, and easily scale inspection throughput as needs increase via a software upgrade license and/or by stacking appliances. The appliances are purpose-built for line speed DPI (Deep Packet Inspection) and its efficient architecture preserves performance regardless of security settings unlike other IPS offerings in the market.

To download a copy of the report, please visit McAfee.com/nsp-Miercom

To learn more about McAfee NSP, please visit McAfee.com/nsp

To learn more about Miercom, please visit https://Miercom.com

 

 

 

The post McAfee NSP Provides Superior Security and Performance appeared first on McAfee Blogs.

Evolve With XDR – The Modern Approach to SecOps

By Kevin Cornejo

If you are part of an organization aspiring to evolve and modernize your SecOps practice with greater efficiencies with XDR, this read is for you.

So, what’s all the continuous hype about XDR? Is it for you and what does it mean to your organization? If you haven’t already, I invite you to read our XDR—Please Explain and Unravel to XDR Noise blogs for added context. From here we can begin to ask, what are XDRs and what are they not? What happens once you acquire components that add the “X-factor” to your threat detection and response (TDR) practice? And how can SOC teams use it for investigation, prioritization, remediation and hunting?

I’ll cover the basics in this blog and hopefully by the end I’ve piqued your interest enough to watch our on-demand webinar where we will cover these aspects in detail.

For security practitioners, there’s one question that is top of mind—am I protected against the latest threats? But let’s face it, threats are evolving, adversaries are evolving too and a shortage of talent make it near impossible to keep up with alerts.

In fact, according to the latest XDR research by ESG, The Impact of XDR in the Modern SOC March 2021 [1], the top challenges related to TDR for respondents were:

  1. 31% spend time addressing high priority/emergency threats and not enough time on more comprehensive strategy and process improvement for TDR
  2. Another 29% have “blind spots” on the network due to inability to deploy agents
  3. 23% find it difficult to correlate and combine data from different security controls, which impacts TDR efficiency/efficacy

Advanced threats are now commonplace, challenging most security professionals to detect and respond before damage is done, we know that these attacks leverage multiple attack vectors to gain a foothold and execute. XDR solutions bring together security telemetry across multiple controls, correlating and stitching together complex attacks so analyst can quickly assess and investigate. XDR is seen as having the potential to modernize the SOC with enriched and aggregated security analytics capabilities to accelerate the investigation to a resolution.

What’s more, McAfee Enterprise is here to help you evolve your SecOps practice into the next era of security analytics, threat detection and response. McAfee’s MVISION XDR tools provide visibility across multiple control points to not only detect threats but to help organizations improve their security posture. In addition, MVISION Insights provides relevant threat intel to help customers proactively prevent threats on multiple control points like endpoint.

We invite view our on-demand webinar with Mo Cashman, Enterprise Architect at McAfee Enterprise, and Dave Gruber, Senior Analyst at ESG, as they cover what XDRs are and aren’t, the keys to SOC modernization for XDR with a focus on the SOAPA approach to security, and how McAfee’s MVISION XDR lays out the flexible groundwork for organizations aspiring to evolve with XDR. Here is the link to watch. 

Whether you are building a SOC function with limited resources or maturing a well-established SOC, McAfee Enterprise is here to help you simplify and strengthen your security operations with MVISION XDR. With MVISION XDR, you can proactively identify, investigate and mitigate threat actors targeting your organization before they can gain a foothold in the network. By combining the latest machine-learning techniques with human analysis, XDR connects and amplifies the early warning signals from your sensors at the network, endpoint, and cloud to improve situational awareness, drive better and faster decisions, and elevate your SOC. [2]

 

1 – ESG Research Report: The Impact of XDR in the Modern SOC by Jon Oltsik

2 – Cyber Cyber, Burning Bright: Can XDR Frame Thy Fearful Asymmetry?

 

The post Evolve With XDR – The Modern Approach to SecOps appeared first on McAfee Blogs.

White House Executive Order – Improving Detection of Cybersecurity Vulnerabilities

By John Amorosi

This is the third in a series of blogs on the Cybersecurity EO, and I encourage you to read those you may have missed. (Part 1, Part 2).

Between the initial publication of the Executive Order (EO) for Improving the Nation’s Cybersecurity on May 12 and late July, a flurry of activity by departments and agencies continues to occur on how best to understand and address potential security gaps. Once identified, these analyses will facilitate plans to fulfill the requirements and further augment agencies’ existing preventative measures to improve their cybersecurity posture. Due to numerous far-reaching cybersecurity breaches that have occurred throughout the past year, one of the primary areas of emphasis in the Executive Order is enhancing the Federal Government’s ability to be more proactive in detecting vulnerabilities and preventing cybersecurity incidents throughout an agency’s network. By introducing an Endpoint Detection and Response (EDR) solution into an enterprise environment, the Government will be able to empower agency SOC teams to engage in active cyber hunting, containment, remediation, and incident response activities more universally.

How Does McAfee’s MVISION EDR Improve an Agency’s Security Posture?

The potential loss and impact of a cyberattack is no longer constrained to a single silo within an agency’s network or a small subset of devices. It can quickly escalate and impact the mission of an agency in seconds. That is why the Executive Order states it is crucial a government-wide initiative is undertaken to begin to get ahead of malicious actors by developing a comprehensive security strategy to prevent attacks before they happen.

Many cyberthreats use multiple attack mechanisms, requiring a different approach to keep our enterprises secure from malicious actors. Endpoint protection platforms still play a critical role in defending agency assets, but they are only one component of a multilayered approach to a robust cybersecurity strategy. Fortunately, McAfee Enterprise’s endpoint protection platform offers a threat detection capability that allows incorporating a next-generation solution (EDR) to track down potential threats if they break through the first layer of countermeasures.

By incorporating endpoint detection and response (EDR), organizations have granular control and visibility into their endpoints to detect suspicious activity. As a cloud service, EDR can incorporate new features and services in much more agile fashion than other solutions. MVISION EDR can discover and block threats in the pre-execution stage, investigate threats through analytics, and help provide an incident response plan. Additionally, by leveraging AI and machine learning to automate the steps in an investigative process, more experienced threat hunters can focus on in-depth analysis of sophisticated attacks, and other members of the SOC team can discover key findings to triage potential threats much faster and with less experience. These new capabilities can learn an agency’s baseline behaviors and use this information, along with a variety of other threat intelligence sources, to interpret findings.

Is Endpoint Detection and Response (EDR) Enough?

As the attack surface continues to evolve, a far more holistic approach to detection is needed. Although EDR is crucial to surfacing anomalous threats and malicious behavior for workstations, servers, and cloud workloads, their area of influence is confined to the telemetry provided by the endpoint. Realizing EDR is network blind and SIEM is endpoint blind, we integrated McAfee Enterprise EDR and SIEM technologies to enrich investigations. Still, more telemetry sources are needed to reveal all potential threat vectors an enterprise may encounter. This is where Extended Detection and Response (XDR) comes in, supporting agencies in a journey beyond the endpoint and allowing them to close even more gaps. 

Why Should Agencies Be Focusing on an Extended Detection and Response (XDR) Strategy?

XDR isn’t a single product or solution but rather a journey, as it refers to compiling multiple security products and technologies that comprise a unified platform. An XDR approach will shift processes and likely merge and encourage tighter coordination between different functions like SOC analysts, hunters, incident responders and IT administrators.

SIEMs are largely data-driven, meaning they need data definitions, custom parsing rules and pre-built content packs to retrospectively provide context based on the data they have ingested. In contrast, XDR is hypothesis driven, harnessing the power of machine learning and artificial intelligence engines to analyze high-fidelity threat data from a multitude of sources across the environment to support specific lines of investigation mapped to the MITRE ATT&CK framework.

Technically speaking, an XDR is a converged platform leveraging a common taxonomy and unifying language. An effective XDR must bring together numerous heterogeneous signals and return a homogenous visual and analytical representation. XDR must clearly show the potential security correlations that the SOC should focus on. Such a solution would de-duplicate information on one hand, but would emphasize the truly high-risk attacks, while filtering out the mountains of noise. The desired outcome would not require excessive amounts of repetitive manual work. Instead, it would allow SOC teams to focus on leading investigations and mitigating attacks. XDR’s presentation of data would be aware of context and content, be advanced technologically, yet be simple enough for analysts to understand and act upon.

As many organizations begin to adopt EDR solutions with the capability to embrace XDR, they also must consider how these solutions enable them to migrate toward a Zero Trust architecture. The wealth of information that will be available in a platform capable of distilling threat telemetry not only from endpoints, the networks they are accessing, and the cloud services they consume will create real advantages. It will greatly improve the granularity, flexibility, and accuracy of the policy engines granting access to enterprise resources and using that degree of trust to determine how much access is granted within the application.

The ideal solution must provide enhanced detection and response capabilities across endpoints, networks, and cloud infrastructures. It needs to prioritize and predict threats that matter before the attack and prescribe necessary countermeasures allowing the organization to proactively harden their environment. The ideal solution also must incorporate Zero Trust, and it should be built on an open security ecosystem.

McAfee Enterprise recognized early on that a multi-vendor security ecosystem is a key requirement to building a defense in depth security practice. One of the key building blocks was the Data Exchange Layer (DXL), which was subsequently made available as an open-source project (OpenDXL) for the community to further develop innovative use cases. This enabled our diverse ecosystem of partners from threat intelligence platforms to orchestration tools to use a common transport mechanism and information exchange protocol, thereby encouraging participating vendors to not only communicate vital threat details but also inform them of actions that all connected security solutions should take.

When you combine XDR and an open security ecosystem for XDR capabilities, agencies will have a solid foundation to advance their visibility and detection capabilities across their entire cyber infrastructure.

The post White House Executive Order – Improving Detection of Cybersecurity Vulnerabilities appeared first on McAfee Blogs.

Critical RDP Vulnerabilities Continue to Proliferate

By Steve Povolny

This month’s Patch Tuesday brings us a relatively small number of CVEs being patched, but an abnormally high percentage of noteworthy critical vulnerabilities.

Vulnerability Analysis: CVE-2021-34535

One such vulnerability is identified as CVE-2021-34535, which is a remote code execution flaw in the Remote Desktop client software, observed in mstscax.dll, which is used by Microsoft’s built-in RDP client (mstsc.exe). The vulnerability is very closely related to a bug released in July of 2020, CVE-2020-1374, which also came through Microsoft’s Patch Tuesday process and had highly similar characteristics. The vulnerability is an integer overflow due to an attacker-controllable payload size field, which ultimately leads to a heap buffer overflow during memory allocation. The vulnerability can be triggered via the RDP Video Redirection Virtual Channel Extension feature [MS-RDPEV], which is typically deployed on port 3389, and is contained inside of compressed UDP payload and encrypted RDP using TLS.

But does this flaw, despite its impressive 9.9 CVSS score, rise to the level of past RDP vulnerabilities, including the infamous BlueKeep (CVE-2019-0708)? Not so fast – there are a few additional factors to take into consideration.

Attack Scenario

First and foremost, this is a client-side vulnerability, meaning there is no real ability for self-propagation, or “wormability” from an Internet perspective. The most likely attack scenario would be to convince a user to authenticate to a malicious RDP server, where the server could trigger the bug on the client side. During reproduction of the issue, we were able to easily trigger the crash and observe a later memcpy using the controlled overflow, which should facilitate exploitation. We think it is likely that exploits will be developed for this vulnerability but the availability of a patch prior to any known public exploitation helps to mitigate risks for organizations and individuals.

Secondly, thanks to the widespread proliferation and reach of BlueKeep and other related RDP vulnerabilities, a significant portion of RDP clients and servers have been disabled or moved from the network perimeter. This is less important given the client-side nature of the bug but does help with the overall attack surface.

In addition to Microsoft’s built-in RDP client (mstsc.exe), which is the more common Remote Desktop network connection, we have also confirmed that some lesser- known RDP vectors are affected by this vulnerability. Microsoft Hyper-V Manager “Enhanced Session Mode” and Microsoft Defender’s Application Guard (WDAG) both use RDP to screen share and present the secured browser respectively. This gives the end user a remote view of their isolated instance in the context of the host system. Rather than reimplementing the RDP session sharing capability, Microsoft ported the existing RDP client code base into Hyper-V and WDAG. Since the RDP client code is self-contained in mstscax.dll (an ActiveX COM object) it can simply be loaded into the Hyper-V (vmconnect.exe) and WDAG (hvsirdpclient.exe) processes to avail of the RDP client functionality. There does not appear to have been any attack surface reduction on this code base as the same DLL is loaded within all three processes mstsc.exe, vmconnect.exe and hvsirdpclient.exe. The impacted components are:

  • Microsoft’s built-in RDP client mstsc.exe uses the vulnerable mstscax.dll when a client remotely connects to an RDP server over the network. We have confirmed mstsc.exe crashes and the vulnerability can be triggered then the client has authenticated to an RDP server.

Mitigation: Patch

  • Microsoft’s Hyper-V Manager software also uses mstscax.dll where the vulnerable function resides. When using “Enhanced Session Mode” (enabled by default in Hyper-V Manager), the process vmconnect.exe loads mstscax.dll. We have confirmed through testing that triggering the vulnerability from inside a Hyper-V Windows 10 image will crash vmconnect.exe on the host. This means that it is subject to guest-to-host escapes using the vulnerability. (Hyper-V is disabled by Default on Windows 10).

Mitigation: Patch or disable “Enhanced Session Mode”

  • Microsoft Defender’s Application Guard also uses mstscax.dll to present the user with a view of their containerized Edge and IE browser. When a “New Application Guard window” is navigated from Edge it launches the process hvsirdpclient.exe which loads mstscax.dll. We have not confirmed the WDAG process hvsirdpclient.exe crashes but it does use the same code base so we recommend patching if using WDAG (WDAG is disabled by Default on Windows 10).

Looking Forward

The built-in RDP client and Hyper-V/WDAG clients communicate over different transport mediums in the form of TCP/IP and VMBus but they both use the same RDP client protocol implementation. Given that the flaw is contained within mstscax.dll, and is self-contained, the vulnerability was ported to these two implementations along with the rest of the code base.

While the urgency for patching remains somewhat lower than past critical vulnerabilities, threat actors will look to weaponize any of these low-hanging fruit that leverage common network protocols. Patching should be a top priority, and furthermore, a comprehensive and ongoing review of internet-facing and internal networked RDP clients and servers would be highly recommended. Eliminating or reducing the attack surface is one of the best counter attacks to vulnerability exploitation.

Microsoft have published a Knowledge Base article for the issue here with corresponding patch information. In the meantime, we are continuing to monitor this vulnerability closely; if exploitation is observed we may release additional content for customers.

For RDP security best practices please see https://www.mcafee.com/blogs/other-blogs/mcafee-labs/rdp-security-explained/

 

With thanks to Cedric Cochin, McAfee.

The post Critical RDP Vulnerabilities Continue to Proliferate appeared first on McAfee Blogs.

Data Centric Zero Trust for Federal Government Cybersecurity

By Jason White

As outlined in Executive Order on Improving the Nation’s Cybersecurity (EO 14028), Section 3: Modernizing Federal Government Cybersecurity, CISA has been tasked with developing a Federal cloud-security strategy to aid agencies in the adoption of a Zero Trust Architecture to meet the EO Requirements. While the government awaits the completion of that effort, I think it’s important to look at the two government reference architectures that have already been published, as they will undoubtedly be considered in the development of CISA’s cloud-security strategy. Both NIST (800-207) and DoD (Version 1.0) have released Zero Trust reference architectures. Both define a Zero Trust telemetry architecture informed by security sensors to dynamically evaluate device and user trust and automatically change access permissions with changes in entity trust. They each accomplish the same goal, even if they take slightly different paths to get there.

Whereas the DoD architecture establishes control planes that each have their own decision point, with data given its own decision point, NIST takes a broader approach to Zero Trust and emphasizes Zero Trust in relation to all resources, not just data. The data control plane within the DoD architecture encompasses data processing resources and applies data-specific context to them. As most networks, applications, storage and services exist to process and store data, it makes sense that access to these resources should be specific to the data contained within them, and not just the access to the resources themselves. Protecting data is central to Zero Trust, and the DoD’s architecture acknowledges this.

Data Centric Enterprise

Today, most Zero Trust efforts seem to focus on defending the applications, networks and services that contain the data but fall short of building data specific protections. And while protecting network, application, and service resources is certainly important and essential to layered protections, improving protection around the data is imperative to successfully adopt Zero Trust architecture. People with alarm systems on their homes still lock up valuables in a safe to guard against failures in controls, or less than trustworthy house guests and hired workers.

The DoD puts data at the center of its reference architecture. User and entity trust is assessed in relation to the data being accessed, and permission levels are dynamically changed specific to individual data resources.  If Zero Trust operates under the assumption that networks and applications are already compromised, then the only logical way to successfully implement Zero Trust is to combine network, application, and service access technologies with a comprehensive data protection platform. In a well-designed Zero Trust architecture, a comprehensive data protection platform serves not only to protect data, but also as a means to inform the analytics layer of potentially malicious insiders or compromised user accounts in order to automatically trigger changes in access permissions.

Imagine a very simple scenario where an organization has classified specific types of data and implemented controls to protect the data. Jane is a contractor, who, because of her contract function, was vetted and cleared for access to critical applications and controlled unclassified data. Jane has a government-issued laptop with data protection software, and she has access to government cloud applications like Office 365 that are protected and governed by the agencies’ CASB solution. Unfortunately, Jane has been having well disguised and undisclosed financial troubles, which have put her in a compromised situation. In order to try to get herself out of it, she has agreed to act as an insider. Jane initially attempts to send sensitive data to herself through her Office 365 email, but the attempt is blocked by the CASB. She then attempts to share the records from SharePoint to an untrusted email domain and again is blocked by the CASB and reported to security. Desperate, she tries to move the data to an external hard drive, and yet again she is blocked. At this point, Jane gives up and realizes the data is well protected.

On the backend of this scenario, each one of these attempts is logged as an incident and reported. These incidents now inform a Zero Trust dynamic access control layer, which determines that Jane’s trust level has changed, resulting in an automatic change to her user access policies and a Security Operations alert. This is one very basic example of how a data protection platform can inform and affect user trust.

What Comprises a Comprehensive Data Protection Platform?

Effectively architecting a comprehensive data protection platform requires a multi-vector and integrated approach.  The platform should be a combination of control points that leverage a common classification mechanism and a common incident management workflow. Data protection enforcement should facilitate enforcement controls across managed hosts, networks, SaaS, and IaaS resources, and whenever possible restrict sensitive data from being placed into areas where there are no controls.

McAfee enables this today through a Unified DLP approach that combines:

  • Host Data Loss Prevention (DLP)
  • Network Data Loss Prevention (DLP)
  • Cloud Access Security Broker (CASB)
  • Hybrid Web Gateway – On-Premises and SaaS
  • Incident Management

This comprehensive approach enables data protection policies to follow the data throughout the managed environment, ensuring that enterprise data is protected at rest, in transit, and in use. Within the platform, user trust is evaluated conditionally based on policy at each enforcement point, and any change to a user’s group through the Zero Trust architecture automatically modifies policies within the data protection platform.

What Next?

Data protection has long been a challenge for every enterprise. Successful implementation of data protection technologies requires a programmatic effort that includes data owners to accurately and successfully identify and build protections around sensitive information. If not implemented properly, data protection opens the door to user disruptions that many organizations have very little tolerance for. That’s why so many organizations focus their efforts on improving perimeter and access protections. Adversaries know this, which is why compromising user credentials or the supply chain to gain access remains a highly leveraged entry point for threat actors, because perimeter and access control protections fail to guard against people already inside the network with appropriate access. As enterprises plan for Zero Trust architectures, data protection has to take center stage.

By mandating that agencies quantify the type and sensitivity of their unclassified data, the EO appears to be steering Executive Branch agencies down the path of data centricity. The Executive Order focuses on improving the adoption of encryption best practices around data and implementing multifactor authentication in an effort to protect access to sensitive data from malicious outsiders. It falls short, however, of encouraging broad adoption of data loss prevention architectures to protect against accidental and malicious data leakage.

CISA has an opportunity to prioritize data as an enterprise’s central resource in their upcoming cloud-security strategy, which will drive agency adoption of Zero Trust Architecture. They should take this opportunity to emphasize the importance of designing a comprehensive data protection platform to serve as both a trust identifier and a mechanism of protection.

The post Data Centric Zero Trust for Federal Government Cybersecurity appeared first on McAfee Blog.

Chipotle’s Marketing Account Hacked: Protect Yourself From Phishing Lures

By Vishnu Varadaraj

Over the past few years, food delivery apps have made it easy for people to get their favorite cuisines brought to their doorsteps. In 2020, consumers grew more accustomed to the convenience of ordering take-out when dining in at restaurants was no longer an option. But as we look ahead into 2022, this trend is here to stay. According to a new report by ResearchAndMarkets, the global online food delivery services market will grow from $115.07 billion in 2020 to $126.91 billion by the end of 2021. 

To get the latest deals and news from their favorite restaurants, many consumers opt in to receiving marketing emails from the dining locations they frequent the most. One such restaurant is the popular fast-food chain Chipotle Mexican Grill, which has added 22.9 million consumers to its loyalty program since launching two years ago. But customers who signed up to receive emails from Chipotle may have more to consider than whether they choose queso or guacamole. According to Bleeping Computer, Chipotle’s email vendor Mailgun was recently breached, which allowed hackers to take over the company’s email marketing efforts and reach out to unsuspecting customers. 

Let’s look at how this threat emerged and what consumers can do to help protect themselves from phishing and live a happy and safe digital life online.  

How the Phishing Scam Works  

Many restaurant chains like Chipotle utilize a third-party vendor to engage with customers who sign up to receive the latest updates. Chipotle uses Mailgun to help send, receive, and track its marketing emails. However, bad actors were able to hack into Chipotle’s Mailgun account, allowing them to send out phishing emails to recipients.  

Under the guise of the Chipotle restaurant chain, cybercriminals reportedly sent out at least 120 malicious emails within a three-day period, luring Chipotle customers to malicious links. Most of the emails directed the unsuspecting users to credential-harvesting sites, impersonating services like a Microsoft 365 login page. Some messages even included malware attachments. 

Phishing’s Impact on Consumer Security  

Although phishing is by no means a new cyberthreat, criminals have made it more difficult to spot scam messages with their increasingly sophisticated tactics. Most scammers disguise themselves as major corporations or other trustworthy entities to trick you into willingly providing information like your website login credentials or, even worse, your credit card number. But in Chipotle’s case, cybercriminals were able to hack into the company’s legitimate email marketing account, making it more difficult for consumers to spot the scam.  

As a consumer, what can you do to sidestep these stealthy tactics and continue to enjoy your life online? Follow these tips to help safeguard your security:  

1. Do your research 

While phishing has been around for years, cybercriminals continuously make these scams more sophisticated in the hopes of tricking even the most seasoned online experts. That’s why it’s important to stay up to date on the latest phishing techniques so you know what to look out for. Doing a quick search on recent phishing scams every once in a while will help you better spot these cyberthreats well before you find them in your inbox.  

2. Refrain from providing personal data 

If you receive an email that appears to be from a business you subscribe to, but they are asking you for personal information, stop and think. Don’t click on anything or take any direct action from the message. Cybercriminals know that consumers tend to let their guard down when they think they are communicating with an entity that they trust, so play it safe and never assume anything. Instead, go straight to the organization’s website. This will prevent you from downloading dangerous content from phishing links or forking over money unnecessarily. 

3. Verify URLs in emails 

If someone sends you a message with a link, hover over the link without actually clicking on it. This will allow you to see a link preview. If the URL looks suspicious, don’t interact with it and delete the message altogether.  

4. Use a comprehensive security software 

Use a security solution, like McAfee Total Protection, which can help protect devices against malware, phishing attacks, and other threats. It includes McAfee WebAdvisor, which can help identify malicious websites. 

Stay Protected 

Now that you know how to spot phishing emails and what to do if you suspect scammers are targeting you, you’re far less likely to fall for these schemes. Remember to be careful with your personal information when you use the internet and err on the side of caution whenever anybody asks you to divulge sensitive details about your identity, finances, or login information – even if the message appears to be from a business you recognize.  

The post Chipotle’s Marketing Account Hacked: Protect Yourself From Phishing Lures appeared first on McAfee Blog.

6 Tips for a Safer and Easier Telemedicine Visit

By Natalie Maxfield
Telemedicine appointment

We’ve all been there. It’s the middle of the night and you wake up to a sad and sniffly kiddo shuffling into your room. Yup, looks like someone has a temperature. You phone the on-call doctor to make sure it’s nothing serious and then set an alarm so you can make an appointment when the office opens. Yet this time that doctor’s visit could go a little differently. It may not take place in the office at all. You may be offered a chance to see the doctor with a telemedicine visit. 

What is telemedicine? 

Telemedicine has been in use for some time. For several years now, it’s connected patients to health care services using live video and sometimes special diagnostic tools that pass along information via the internet. Overall, it’s a way of going to the doctor without actually going to the doctor’s office. Historically, it’s done a great job of caring for people who live in remote locations and for people with ongoing conditions that need long-term monitoring.  

That all changed last year. Telemedicine visits saw a big spike during the early days of the pandemic, partly to help keep the spread of the virus in check and to protect vulnerable patients. Even though that spike has since tapered off, one study found that about 40 percent of consumers in the U.S. say they’ll use telemedicine moving forward—and our own research from earlier this year put that worldwide figure at nearly 30 percent. Telemedicine seems to be taking root.  

While telemedicine leaves many families with more healthcare options, it may leave them with a few more questions about their security as well. After all, our health data is a precious thing. In the U.S., HIPPA privacy standards protect our information and consultations with healthcare professionals. However, online visits add an entirely new dimension to that. 

Make your telemedicine visit safer with these tips 

If your health care provider recommends a telemedicine visit for you or your child, it can be both a convenient and safe experience with a little prep on your part. With a few straightforward security measures lined up (some of which you may already have in place), you can make sure that everyone’s private health information will be safe and secure during your virtual visit. 

1. Protect your devices 

A great first step for a safer telemedicine visit is to protect your devices with comprehensive security software. Like security software protecting you while you manage your finances, file your taxes online, and so forth, it will help protect you while sharing your private health information. Plus, it will give you plenty of other features that can help you manage your passwords, protect your identity, safeguard your privacy in general, and more.   

Be sure to protect your tablets and smartphones while you’re at it, even if you’re not using them for telemedicine. With all the shopping and banking we do on those devices, it’s a smart move to protect them in addition to laptops and computers.  

2. Use strong, unique passwords 

Your telemedicine visit may require setting up a new account and password, one that will add to your growing list considering all the banking, social media, and payment apps you probably use. Plus, there are the umpteen other passwords you have for your online shopping accounts, your children’s school records, your taxes, and so on. Don’t give into the temptation of re-using an old password or making a simple one. Hackers count on that, where stealing one password means stealing several—and gaining access to multiple accounts in one blow.  

When you set up your account, use a strong, unique password. This may also be a good time to get a handle on all your passwords with a password manager. Also found in comprehensive security software, a password manager can create and securely store strong and unique passwords for you, which can keep you safe and make your day a little easier too. 

3. Use a VPN 

A VPN, or virtual private network, offers a strong layer of additional protection when you’re transmitting health data or simply having a private conversation about your health with a professional. A VPN creates an encrypted tunnel to keep you and your activity anonymous. In effect, your data is scrambled and hidden to anyone outside your VPN tunnel, thus making your private information difficult to collect. 

Like many of the security steps, we’re talking about here, using a VPN offers benefits beyond telemedicine. A VPN is a must when using public Wi-Fi, like at airports and cafes, because it makes a public connection private (and safe from prying eyes). Additionally, it’s also great for use at home when taking care of sensitive business like your banking or finances. 

4. Look out for phishing attacks and scams 

If you’re searching for a telemedicine provider online, keep an eye out for sketchy links and scams. The sad thing with the increased use of telemedicine is that hackers have clued in and are looking for targets. One way you can stay safer is to use a web advisor with your browser that can identify potentially hazardous links and sites. Anti-phishing technologies in your security software can help as well by preventing email-based scams from reaching your inbox in the first place.  

5. Check in with your provider 

Even better than searching online, consider contacting your pediatrician or doctor’s office for a recommendation, as they can point out the best healthcare options for you and your concerns—and let you know if a telemedicine visit is the best course of action for you in the first place. This way, you can get comfortable with what your visit will look like, find out what special apps (if any) are used, and how your care provider will protect your privacy. Also, you can decide which device you will use and where you’ll use it so that you feel at ease during your virtual visit. 

A reputable care provider will likely put all this pre-appointment information together for you on their website or “frequently asked questions” (FAQ) page, which will include helpful links and numbers to call if you need help or have questions. For an example of what that could look like, check out the telemedicine page that Virginia Mason/Franciscan Health designed for its patients. 

6. Pick a private place 

We’ve talked plenty about digital security, yet there’s the old-fashioned issue of physical eavesdropping to think about too. When it’s time for your actual appointment, pick a place in your home where you can assure yourself some privacy. (Of course, don’t go online for your virtual appointment in a public place.) Look for a space where you can’t be overheard by neighbors and passers-by—preferably someplace like your bedroom where you can be comfortable as well. If your child has an appointment, let them know that this is like any other doctor’s visit and help them keep their voice down so they can keep their info private. 

What else should parents know about telemedicine? 

With telemedicine becoming more and more of an option for families, it’s just one of the many tools your doctor or pediatrician can use to keep you and your family well. So as always, if you have a health concern, call your doctor or pediatrician’s office for guidance. They’ll know the best path forward. 

In the meantime, there are some great resources out there that can help you make the best decision about telehealth if the time comes. One really helpful article from the American Academy of Pediatrics helps parents get up to speed on telemedicine and outlines a few cases where a telemedicine visit might be right for your child 

With the sniffles, fevers, and plenty of, “Mom, I don’t feel so good …” comments that come along with parenthood, it’s nice to know that telemedicine gives us another tool we can use to keep our families well—one that’s ultimately up to you and your doctor to choose if it’s right for your child. 

The post 6 Tips for a Safer and Easier Telemedicine Visit appeared first on McAfee Blog.

Executive Spotlight: Q&A with Chief Information Officer, Scott Howitt

By Melissa Gaffney

Now that we’ve officially kicked off our journey as McAfee Enterprise, a pure-play enterprise cybersecurity company under the new ownership of Symphony Technology Group (STG), we’re celebrating a lot of new firsts and changes. But one thing remains the same: our passion and commitment to make the world a safer, more secure place. And that passion starts with our people. In this new blog series, you’ll meet some of the executives devoted to tackling today’s most pressing security concerns and innovating for the future.

Q: How did you come into this field of work?

I didn’t start out in information technology, I graduated from college with a degree in physics at the end of the Cold War. At the time, all the physics jobs had evaporated, so I started out as an intern in programming at EDS. I did that for a few years and then went into management. I eventually became a CTO and then a CIO.

When I was a CIO, I learned that I really didn’t know much about information security, and it was hindering me in the CIO role. My next job was a director of information security at a financial services company, and I never looked back. I found that I had a passion for information security and have been the CISO at two different Fortune 500 companies. My current role as CIO for a company that creates enterprise cybersecurity software is a perfect marriage of both skill sets.

Q: With cybersecurity and AI capabilities expanding at a rapid pace, what will the future look like for companies like McAfee Enterprise in the coming years?

I think our products like Insights and MVISION XDR are going to change the way we think about security. We have always relied on “after-the-fact” data as opposed to proactively looking at our environment. The days of looking at packet capture and syslogs as our primary defense method are behind us. While they are great for those “after-the-fact” forensic studies, they really don’t do much to proactively defend your enterprise.

Understanding user and device behavior and being able to spot anomalies is the future. Information security leaders need to stop having a negative reaction to new technology and instead embrace it. I also believe blockchain will likely be a good solution for IoT identity and machine learning will take over for the SEIM. You will start to see our tools evolving to meet these new challenges and paradigms.

Q: Since joining the company just over a year ago, how do you feel you’ve been able to help the company grow since last year and the impact you’ve had in your role?

My team has done a very good job in leading the charge to the cloud while at the same time reducing costs. But we are just at the beginning of the journey, and have a long way to go.

We have also challenged our lack of standards and formed the Enterprise Architecture team to drive these patterns into the organization. As Hamlet said, we must suffer “the slings and arrow of outrageous fortune” for trying to drive that change, but I have been impressed by the dedication of members of our Technology Services team. Our security team has worked in lock step with the rest of the organization to drive our outward facing security vulnerabilities down to zero. That is not where we were when I arrived, but the team took a measured approach to dramatically improve our security posture.

I also enjoy spending time with the sales organization and helping them in supporting our customers.   After being in the CISO role for over 12 years, I understand how difficult the role can be. I like to help our sales team understand what pain CISOs are experiencing and how our products can help.

Q: How do you hope to impact change in cybersecurity?

I have been involved in the clean-up of two major breaches. While it is easy to get caught up in the numbers of records lost or how the breach will affect the organization’s stock price, there is a very human cost. Many security or IT leaders lose their job after a breach where stolen records are used to commit identity theft which is very painful to reconcile if you are victim, as we have seen in some of the ransomware attacks on healthcare systems that may have led to the death of patients. The great thing about being a leader in cybersecurity is that you feel you are doing something for the good of the public.

My teams have worked closely with various law enforcement agencies and have caught attackers. There is no better feeling than knowing you have taken down a criminal. I personally want to look back on my career and believe the field of cybersecurity is in a better place than when I started and that the company I work for played a major role in that change.

 

The post Executive Spotlight: Q&A with Chief Information Officer, Scott Howitt appeared first on McAfee Blog.

McAfee Enterprise ATR Uncovers Vulnerabilities in Globally Used B. Braun Infusion Pump

By Douglas McKee

Overview

As part of our continued goal to provide safer products for enterprises and consumers, we at McAfee Advanced Threat Research (ATR) recently investigated the B. Braun Infusomat Space Large Volume Pump along with the B. Braun SpaceStation, which are designed for use in both adult and pediatric medical facilities. This research was done with support from Culinda – a trusted leader in the medical cyber-security space. Though this partnership, our research led us to discover five previously unreported vulnerabilities in the medical system which include:

  1. CVE-2021-33886 – Use of Externally-Controlled Format String (CVSS 7.7)
  2. CVE-2021-33885 – Insufficient Verification of Data Authenticity (CVSS 9.7)
  3. CVE-2021-33882 – Missing Authentication for Critical Function (CVSS 8.2)
  4. CVE-2021-33883 – Cleartext Transmission of Sensitive Information (CVSS 7.1)
  5. CVE-2021-33884 – Unrestricted Upload of File with Dangerous Type (CVSS 5.8)

Together, these vulnerabilities could be used by a malicious actor to modify a pump’s configuration while the pump is in standby mode, resulting in an unexpected dose of medication being delivered to a patient on its next use – all with zero authentication.

Per McAfee’s vulnerability disclosure policy, we reported our initial findings to B. Braun on January 11, 2021. Shortly thereafter, they responded and began an ongoing dialogue with ATR while they worked to adopt the mitigations we outlined in our disclosure report.

This paper is intended to bring an overview and some technical detail of the most critical attack chain along with addressing unique challenges faced by the medical industry. For a brief overview please see our summary blog here.

Table of Contents

Background

The most important part of any product assessment is a solid understanding of the purpose and function of the product under test. Without this it is simply too easy for research to produce less than meaningful results. Therefore, for this research it is first important to answer these few simple questions. What are infusion pumps? What security research has already been performed?

What are Infusion Pumps?

To start with the basics using a trusted resource – fda.gov says “An infusion pump is a medical device that delivers fluids, such as nutrients and medications, into a patient’s body in controlled amounts.” The FDA goes on to explain they are typically used by a “trained user who programs the rate and duration”. Infusion pumps can be simple, administering a single intravenous (IV) medication in the home setting, or complex, delivering multiple medications simultaneously in the ICU setting. From the 1960’s to 2000 infusion pumps were mostly electromechanical devices with some embedded electronics, but the turn of the century delivered “smarter” devices with better safety mechanisms and the possibility to program them, which slowly opened the door to information security challenges. Cross referencing the specific product we have chosen to look at, the Infusomat® Space® Large Volume Pump (Figure 1), we see that this pump is meant only for a medical setting and not designed for a home user. Infusion pumps exist mostly to remove the need to perform manual infusion, which requires dose conversion into drops per minute and visually counting drops to set a rate which is both time consuming and unreliable. It is estimated that there are over 200 million IV infusions administered globally each year, and 2020 sales of IV pumps in the US were at $13.5 billion. Clearly infusion pumps have cemented their place in the medical world.

Figure 1: B. Braun Infusomat Pump

What Security Research has Already Been Performed?

Since infusion pumps are such a large part of the medical field and there are several different types, it is reasonable to expect our team is not the first to inquire about their security. As expected, there have been many different research projects on infusion pumps over the years. Perhaps the most well-known research was presented in 2018 at Blackhat by Billy Rios and Johnathan Butts. The infusion pump portion of their research was focused on the Medtronic insulin pumps. They found they were able to remotely dose a patient with extra insulin due to cleartext traffic and the ability to issue a replay attack. Even earlier, in 2015 research was published on the Hospira Symbiq Infusion Pump showing that it was possible to modify drug library files and raise dose limits through “unanticipated operations”, although authentication was required.

Of course, for our purpose, the most important question remains – is there any previous research performed on our specific device. Initially the answer was no; however, during our research project a very large study, ManiMed, was released under the aegis of German authorities to examine the security of network-connected medical devices produced or in use in their country. This included research done on the B. Braun Infusomat pump. This is a fantastic piece of work which covers many network-connected devices. We will reference this study and talk about their findings where appropriate throughout this document, as we additionally explore our enhancements to this research and demonstrate a new attack that was previously called impossible.

Project Motivation

If we consider the Background section earlier, it becomes apparent there is still a large amount of critical research to be performed in this space. Infusion pumps are a prominent and continuously developing area within the medical device space, where previous research has only scratched the surface. Due to the potential critical impact and the state of medical device security, many previous projects didn’t need to dig very deep to find security issues or concerns. The infusion pump industry has numerous devices which have not been researched publicly at all, and even more that only received a cursory analysis from the information security community. For these reasons, we decided to have an in-depth look at one of the largest infusion pumps vendors, B. Braun, and specifically focus on one of their devices used worldwide to analyze it at a depth never seen before. Tackling every aspect of this pump, we wanted to answer the basic question: In a realistic scenario, leveraging original security vulnerabilities, could a malicious attacker impact human life?

System Description

For this research project our system consisted of three main components– a B. Braun Infusomat Large Volume Pump Model 871305U (the actual infusion pump), a SpaceStation Model 8713142U (a docking station holding up to 4 pumps) and a software component called SpaceCom version 012U000050. These models and the corresponding software for the B. Braun Infusomat system were released in 2017. In industries such as consumer electronics, this would be considered obsolete and therefore less relevant to research. However, as discussed above, in the medical field this is simply not the case. Since older devices are still widely used and perhaps originally developed with a less emphasis on security, it increases the importance of investigating them. For due diligence, we consulted and confirmed with our industry partners that this specific model was still actively being used in hospital systems across the country.

SpaceCom is an embedded Linux system that can run either on the pump from within its smart-battery pack or from inside the SpaceStation. However, when the pump is plugged into the SpaceStation, the pump’s SpaceCom gets disabled. We performed most of our research with the pump attached to the SpaceStation as we found this was the most common use case. If a SpaceStation was compromised, it could potentially affect multiple pumps at once. SpaceCom acts as the external communication module for the system and is separated from the pump’s internal operations, regardless of where it is running from.

If we consider the pump attached to the SpaceStation as one system, it has three separate operating systems running on three distinct chipsets. SpaceCom running on the SpaceStation runs a standard version of Linux on a PowerPC chipset. The WIFI module for the SpaceStation also runs a standard version of Linux on an ARM chipset and communicates over a PCI bus with SpaceCom. Lastly, the pump runs its own custom Real Time Operating System (RTOS) and firmware on a M32C microcontroller. An additional microcontroller is used to monitor the M32C microcontroller, but this goes beyond the scope of our research. Due to this modular and isolated design, the Spacecom communication module and the pump need a dedicated path for exchanging data. This is resolved via a CAN bus, shared throughout the SpaceStation, where it allows pumps and accessories to communicate with each other. This is what SpaceCom and any pump docked into the Space Station rely on for their exchange. An architecture diagram below helps demonstrates the system layout and design when a pump is present in the docking station.

Figure 2: System Architecture

SpaceCom Functions and Software Components

SpaceCom contains many different pieces of propriety software and applications to support the many functions of the larger B. Braun and medical facility ecosystem. Our team spent time analyzing each one in great detail; however, for the purpose of this paper we will only touch on key components which are important to the most critical findings mention in the opening summary.

An important function of SpaceCom is to be able to update the drug library and pump configuration stored on the pump. The drug library contains information such as ward and department, a list of pre-configured drugs with their default concentrations, information messages to be printed on the screen when selected, and more importantly, soft, and hard limits to prevent medication error. One of the biggest selling points of the smart infusion pumps is their ability to prevent incorrect dosing of drugs, which is partly done through the limits in the drug library. Another risk the drug library helps mitigate is human error. By having the most common dosage and infusion lengths preprogrammed into the pump, it eliminates errors associated with rate calculations, and drop counting previously mentioned, associated with manual infusion therapy.

The pump RTOS contains a database of over 1500 key/value pairs used during operation. This data consists of everything from status about current components, battery life, motor speed, alarms and values used for tube calibration. As such, this data would be considered extremely sensitive in the context of the pump’s operation and is not intended to have direct user interaction, nor is it presented to the user. A subset of the keys can be indirectly modified via a dedicated servicing software by certified technicians.

To interact with both the drug library and pump configuration on the pump from SpaceCom, a propriety binary called PCS is used. The PCS binary uses the canon binary to interface with the CAN bus to send commands to the pump’s system for both reading and writing values based on the drug library or pump configuration provided to it. The main interface to accomplish this task is via a propriety TCP networking protocol, which by default is sent over port 1500. This protocol is both unauthenticated and unencrypted and we relied heavily on these weaknesses for our research and attacks. Additionally, this resulted in the filing of CVE-2021-33882 and CVE-2021-33883 as stated in the overview above.

Critical Attack Scenario Details

Goals

What could be the goal of a malicious attacker? Realistically speaking, most attacks have been proven to be financially motivated. When translating this to our infusion pump, the question becomes: What would medical executives, without hesitation, pay large sums of money for? If we look at recent events, in May of 2021, Colonial Pipeline paid hackers 4.4 million dollars to get their oil pipeline running again from ransomware attacks. Attacks on healthcare settings are increasing with the FBI estimating a cyberattack using “Ryuk” ransomware took in $61 million over a 21-month period in 2018 and 2019. Attacks are now showing potential for patient harm with one example beginning on October 28th, 2020. The University of Vermont Health Network was part of a larger coordinated attack on multiple US healthcare which resulted in a complete loss of their electronic medical record system for weeks. The results of the ransomware-based attack led to 75% of active chemotherapy patients being turned away, rerouting of ambulances, and delays in testing and treatment. Considering IV pumps are directly supporting human life in some cases, it is easy to suggest an attacker could demand any “ransom” amount leveraging threats to actual patients. To accomplish this an attacker would therefore need to control the operation of the pump.

This task is easier said than done when considering the design of the pump as outlined above. The traditional “getting root” on the network component (SpaceCom) proves ineffective. To make any changes to the pump itself, an attacker needs to interact with the pump’s RTOS, which is not network connected. In this section we provide an outline on how we were able to accomplish this goal by using the five reported CVEs.

Initial Access

Even though getting root access on SpaceCom will not provide us everything we need to accomplish the ultimate goal, it is still the first step. During our reconnaissance and enumeration of the system we discovered a remote interface listening at https://{ipaddress}/rpc. This interface was connected to a common open source service referred to as “json-dbus-bridge”. As described on GitHub, this service “is a fast-cgi application that provides access to D-Bus. It accepts JSON-RPC calls and translates these into D-Bus calls. Any response is converted back to JSON and sent to the client.” This piqued our interest since external access to the D-Bus subsystem could provide us access to internal communication, which may have a different level of security than typical external networking.

When doing any type of vulnerability research, product security assessment or evaluation it is critical to not forget to search for existing issues in any third-party components. This is even more important since we are working on a software released in 2017. While scouring GitHub pages for the json-dbus-bridge, we noticed a format string vulnerability that was patched in 2015. Of course, we had to test if the version we encountered had the existing vulnerability.

Figure 3: Format String Vulnerability Testing

The tests in Figure 3 confirmed the existence of the format sting vulnerability. While this format string vulnerability had been publicly discovered in 2015 in the json-dbus-bridge code, the update was never included in B. Braun’s software and hence satisfied the condition for a vendor specific zero-day vulnerability disclosure. This was filed as CVE-2021-33886 and was our first reported discovery to B. Braun. Over the next several weeks we were able to leverage this vulnerability and create a working exploit to gain www user level shell access to the device. Due to the potential impact to unpatched devices, the exact technical details of our exploit have not been included.

Privilege Escalation

Although user access is the first step, root access will be needed in order to interact with the CAN bus to communicate with the actual pump. A good target and well-known process for privilege escalation is to find a binary owned by root with the setuid bit enabled. We could not find one ready to use; however, the web interface has an option to backup and export settings which relies on tarring a folder containing a handful of files and encrypting it with AES using a user-provided password. The backup archive can then be downloaded for later restore of the settings. When restoring this backup, root is the user doing the untarring in such a way that file permissions are being preserved from the provided tar file. Thus, if we can tamper with the archive, we might be able to create a privilege escalation scenario.

To use this to our advantage we need to embed a binary in the backup archive owned by root with the “setuid” bit set so we can use it to elevate privileges. Ironically, the code responsible for the import/export of settings is already doing most of the work for us. The “configExport” binary located on the filesystem is a wrapper to call setuid/setgid (and sanitize inputs) which then calls execve on the script “/configExport/configExport.sh.” We can use a hex editor to change which script the “configExport” binary is running and replace “configExport.sh” with an attacker-controlled script, while also patching out the input sanitizing. We could absolutely have compiled our own binary instead, but this approach saves us from a couple of hours of PPC cross-compiling fun.

While we were working through this component of our attack chain, researchers working on the ManiMed project, in coordination with B. Braun, published a report which included this finding, listed as CVE-2020-16238 on B. Braun’s website. As described in section 4.6.2.2 of their report “An authenticated arbitrary file upload vulnerability combined with an unvalidated symbolic link and local privilege escalations enables attackers to execute commands as the root user.” We commend the ManiMed researchers for also discovering this vulnerability and practicing responsible disclosure.

Crossing Systems

The real work begins once root access is obtained. The challenge becomes how to affect change on the pump RTOS with root access on the SpaceCom communication module. One common approach would be to continue to look for vulnerabilities in the pump’s RTOS that would lead to code execution within its system. This method poses many challenges during black box testing and could lead to damaging our limited number of test devices.

Another approach which we have leveraged in past projects is hijacking the standard functionality of the device to further the attack. This can be more manageable, but it first requires a deep understanding of how the device works and the desired outcome. This also tests the device’s defense in depth and can prove to be very difficult depending on the security measures in place. In our case, this would force the question of how well-protected the area is surrounding the communication between the pump and SpaceCom.

As mentioned in the system description section above, the PCS binary is responsible for communicating with the pump’s system for two critical operations – updating the drug library and updating the pump config. These are key functions that would likely be of interest to an attacker. There are several different approaches which could be taken by an attacker to interact with these key operations, especially given root access. Considering the various alternatives, we chose to leverage our root access on SpaceCom to inject code into PCS’s memory and use existing functions and objects to communicate with the pump’s internal system.

Our chosen path required a deep understanding of the data structures and functions used to facilitate this communication. The key is to find the perfect place in a larger operation call stack where we can modify or inject the data we want, while still utilizing lower-level functions to avoid the need to unnecessarily create objects and data from scratch. To illustrate this point, consider if we want to send a simple signal to power off the pump from within PCS’s memory space. The fact that all data sent from SpaceCom to the pump’s RTOS is done through CAN messages, with root access meant that we could send CAN messages directly on the CAN bus. This would require an extensive knowledge and breakdown of the CAN message structure as the underlying protocol is designed by B. Braun and would have to be reverse engineered. Although possible, it is very difficult, especially with CAN’s data frame field having a lack of strict specifications. Inside PCS there is a call chain which builds this message. If we were to inject and utilize functions very low in the call chain, such as the trySend function which sends a CAN message (as seen in figure 4) , we would need to understand all of its arguments and the data format it uses. We’d essentially have the same problem as before.

Figure 4: trySend function

If we look higher in the call stack for a function that performs the operation we are interested in, switching off the device, we can instead let the rest of the call chain do the heavy lifting for us. Notice in Figure 5 below there is a function for just this purpose, which only requires one parameter to be passed.

Figure 5: switchOffDevice

Leveraging this concept, we are able to use the functions within PCS in a manner similar to an API to perform read and write operations to the pump’s database and force a change.

Understanding Critical Data

If we want to send and write data such as the drug library and pump config, we first need to understand the format of the data, how it is processed and any security measures in place which need to be accounted for. Our team spent extensive time reversing both the drug library and pump configuration data. A portion of the pump configuration is referred to as calibration and disposable data. Both can be modified through our attack chain; however, for this paper we will just touch on the more critical of the two the calibration and disposable data.

The calibration and disposable data are usually seen in the form of files that are living in SpaceCom. At a more granular level, they are a collection of key/value pairs that are meant to be read or written to the pump’s database. Each file can also be a large blob of data living on the pump flash. The physical location of each key within this blob is hardcoded in the pump and sometimes in PCS. This representation is relevant when it comes to computing various CRCs that operate on blobs of data rather than key pairs. These checksums are used heavily throughout the pump’s infrastructure with critical data to ensure the integrity of the data. This goes to ensure the safety of patients by ensuring data can’t be accidently modified or corrupted. Figure 6 shows an example of disposable data as contained in files on SpaceCom.

Figure 6: Disposable Data

Looking at the variable names inside the disposable data file and relevant code in the pump firmware led us to one key/value pair that specifies the “head volume” of the tube, which can be seen in the figure above. After extensive analysis, we determined that “head volume” is the parameter dictating the amount of medication being delivered per cycle to the patient. We determined that if this value was to be changed, it could be potentially harmful. We detail this analysis in section “Unique Consideration for Infusion Pump Hacking” below.

With a target key/value pair in mind, the next step would be to understand how to calculate the CRCs. Since the system is constantly checking the integrity of the data, if an attacker wanted to modify any value, they would also need to modify the CRCs which validate the changed data. Through reverse engineering we determined the CRC was a custom implementation of a CRC16, where the initial value is 0xFFFF and relies on a hardcoded polynomial table. We were able to extract this algorithm and write custom python scripts to compute the CRC needed for the disposable data.

With a basic understanding of the critical operational data and the ability to compute the CRCs, we are able to leverage the PCS binary, in an API fashion to send commands to the pump to modify this data. This holds true for both the drug library and the pump configuration data. Although CRCs are great for integrity checking, they provide no security or level of trust of the where the data is coming from.  This lack of origin verification is what led to the filing of CVE-2021-33885.

Final Attack Chain

If we review our attack chain, we can gain user-level access to the device without authentication or authorization. We can then escalate our privileges to root and leverage the existing functionality of the PCS binary to make modifications to the pump’s disposable data. Conceptually, the process is complete; however, we can do some additional housekeeping in order to make our attack chain slightly more realistic and efficient.

Since the proprietary protocol for the PCS binary is unauthenticated, there are certain configuration options which can be modified for an attacker to make their job even easier. One of these configuration options tells the pump which server is “trusted” to receive operational data from (such as the drug library). An attacker can send a command to SpaceCom which clears the current trusted server configuration and rewrites it to an attacker-controlled server. This is not required for this attack when leveraging the format string and privilege escalation path outlined above; however, it does provide alternative methods and simplifies the attack process.

Lastly, the pump has an audible and visual notification when any configuration or drug information has been modified on the pump. Once again in the spirit of a realistic attack, a malicious attacker is going to want to be as stealthy as possible. To accomplish this, it was worth determining a method in which to clear these notifications. This process turned out to be as simple as restarting the pump after our modifications were complete. The reboot operation happens in a matter of seconds, so by using this technique, all alerts to the end user were quickly cleared. The complete attack process can be seen outlined in the diagram below.

Figure 7: Complete Attack Chain

Attack Prerequisites

Although this attack chain presents a complete method to modify critical pump data, it is important to recognize the conditions required for this attack to be successful. These pumps are designed to be network connected to a local internal network. Therefore, under normal operating conditions an attacker would need to have found a method to gain access to the local network. Could this attack take place over the internet? Technically speaking, yes; however, it would be very unlikely to see a setup where a pump is directly internet-connected.

In addition to being on the local network, the pump does have safeguards in place to ensure no modifications can occur while the pump is operational. From what we discovered during our research, if the pump is actively administering medication, it ignores any request on the CAN bus to modify library or configuration data. This means the attack can only be successful when a pump is idle or in standby mode in between infusions.

Impact

The prerequisites for this attack are minimal and are not enough to mitigate the overall threat. In today’s world there are a wide range of documented and utilized methods for attackers to gain access to local networks. If we also consider that hospital or medical facilities are generally public places with little to no barriers to entry, it is easy to see how someone malicious can go unnoticed and obtain network access. Pumps are also not always actively administering mediation. Even in the busiest of hospitals there is downtime between patients or times when pumps are simply not in use.

With the ability to modify disposable and configuration data on the pump, there are a wide range of possibilities for which an attacker could choose to have an impact. An attacker could simply put the device in an unusable state or write arbitrary messages on the screen. We chose to focus on the disposable data, specifically the key/value pair labeled “TUBE_HEADVOLUME_A” since we determined it would demonstrate the greatest impact, bringing harm to a patient. In the below video you will first see the pump under normal operation. After demonstrating the system working as intended, we modify the configuration remotely using the attack chain explained above and then illustrate its effect on the pump when administering medication.

Demo

Unique Considerations for Infusion Pump Hacking

An interesting characteristic of this project is that its impact and consequences are inherently grounded in the physical world. Where common software hacks end with the ability to get root access or kernel privileges, in this project, the way the device is used by medical staff and how it can affect patient safety is crucial to the outcome. The next few sections will focus on various aspects of the project that fall under this umbrella.

Why we modified TUBE_HEADVOLUME

As described previously, our attack relies on modifying the disposable data that governs the way the pump is used to deliver medication. But why and how did we decide to go investigate this? An interesting side-effect of the pump being built to be safe is that most of the inputs and outputs it receives from the CAN bus are extensively checked against out-of-range access. From an attacker’s perspective who has already compromised SpaceCom, this would usually be the prime target for memory corruption bugs. Fuzzing and emulating the M32C architecture is cost-heavy in terms of upfront work, so instead, we started looking for a path of least resistance and searched for blind spots in the secure design.

In our case, we wanted to be able to affect the amount of drug being dispensed, preferably without having something on screen as that would indicate a malfunction or abnormality. Our original plan was to tamper with the device drug library, but it turns out that data we could alter would be displayed on screen, which could raise concern as medical staff verify the prescribed drug and rate against the order before, and immediately after starting the infusion. This would not be ideal for an attacker, so we kept investigating. The other files we could modify were the calibration data and the disposable data. These files are interesting as they describe internal parameters; the calibration one specifies the physical parameters of the device itself, while the disposable one is for the specifics regarding the tubing going through the pump. Anyone familiar with precision tools know how important a good calibration is. If the calibration is off it will lead to improper operations or results. From an operational standpoint this makes sense, but from an attacker perspective this has a strong likelihood of fitting the bill for the attack we had in mind: modifying an internal value so the pump thinks it is dispensing the right amount of drug, while it is actually incorrect in its calculations.

Looking at the variable names inside the disposable file and relevant code in the pump firmware led us to one that specifies the “head volume” of the tube. From our understanding, each time the pump pumps, it compresses the IV tubing thereby pushing a small quantity of drug towards the patient. Overall, there are many physical parameters that would govern this volume –the internal tube diameter, the length of the compressed region, how much the tube is being compressed, etc.—but in the end, it seemed that all these values were summed up in one variable. Cutting this value in half would make the pump believe it is pushing half the actual amount, and therefore would have to pump twice as fast to deliver it. We tried our hypothesis, and by doing so, the amount of drug dispensed doubled while the pump assumed everything was normal.

Operations in Hospitals and Consequences of Over-Infusing Drugs

Now that we have an idea of what happens to the device when we alter its internal configuration, we can consider how this could play out in the real world. As mentioned previously, medical staff are expected to be extra-careful when using these devices, ensuring the numbers match the doctor’s order. In the United States, both the Centers for Medicare and Medicaid Services (CMS) and the American Society of Clinical Oncology require standard of practice be followed with high risk or hazardous infusions like blood or chemotherapy. This standard requires two appropriately trained people (usually nurses), one who will be infusing the medication, and the other to verify the order and configuration prior to administration. Looking internationally, we were also  able to find this same protocol in use at an Irish hospital. It confirms the attention to detail and the requirement to double-check each value is correct. However, another document describing the adoption of a smart pump system in a Swedish hospital hints at concerns (p. 47) that invalid drug protocols might be followed if a nurse picked the wrong default settings on the pump. These documents are anecdotal, but the overall feeling is that strong checks are in place. Under pressure or with multiple infusions, mistakes can be made, which smart pumps should prevent.

One of our industry partners, Shaun Nordeck, M.D. is an Interventional Radiology Resident Physician at a Level 1 Trauma Center and prior, served as an Army Medic and Allied Health Professional. Leaning on more than 20 years in the medical field. Dr. Nordeck states “A high-pressure environment such as the ICU may be at increased risk for infusion errors since these critical and often medically complex patients have multiple infusions which are being adjusted frequently. Errors, however, are not limited to the ICU and may just as easily occur in the inpatient ward or outpatient settings. Essentially with each increase in variable (patient complexity or acuity, number of medications, rate changes, nurse to patient ratio, etc.) there is an increased risk for error.”

As a measure of safety, it is important to keep in mind that one can visually count the number of drops to verify the infusion rate (there’s even an optional module to do it automatically). However, depending on the parameters, a minor change of speed (e.g., halved or doubled) might not be immediately obvious but could still be deleterious. Dr. Nordeck further stated that “something as routine as correcting a person’s high blood sugar or sodium level too quickly can cause the brain to swell or damage the nerves which can lead to permanent disability or even death.” The FDA’s MAUDE database keeps track of adverse events involving medical devices and can be used to see what type of problems actually occurred in the field. Certain drugs are particularly potent, in which case the speed at which they are delivered matters. In this instance, an over-sedation at 4 times the intended rate led to the death of a patient a few hours after the incident occurred. Under-dosing can also be problematic as the required medication does not reach the patient in the appropriate quantity. These examples highlight that a pump not delivering the correct amount of drug occurs in the field and may remain unnoticed for multiple hours, which can lead to injury or death.

Common Pitfalls

Let’s now take a step back and consider some generic shortcomings that became apparent while looking at the infusion pump ecosystem. We believe these problems are not specific to a brand or a product but rather may be found across the entire medical field. This is because throughout the years, this vertical has only received a limited amount of attention from both malicious actors and the cybersecurity industry.  With the increased rate of cyber threats and the constant additions of new smart devices in private networks, new attack surfaces are being exposed and the hardening of many systems may turn into low hanging fruits for the ones lagging. The slower life cycle of smart medical devices means that best security practices and mitigations take longer to be adopted and deployed in the field. Awareness of this may help healthcare organizations, and their supporting IT administration have a more critical eye on the technology deployed in their environments while medical device vendors should remain vigilant of their “legacy” technologies and continually reassess the risk profile associated with legacy products in the current cybersecurity landscape.

Patching is Costly

Consumer products, both hardware and software are often nimbler than their counterparts in the medical industry. Your web-browser or operating system on your personal computer will auto-update immediately after a patch is released which come on a regular basis. This is radically different for medical devices which are often directly linked to patient safety and therefore need to undergo a more rigorous vetting process before applying updates. This often leads to the need to immobilize devices during updates, perform follow up tests and recalibrations. It is often very expensive and challenging for medical facilities to update products, resulting in deployed devices with firmware that is several years old. Because of this, “table stakes” security measures may never be fully adopted, and corresponding vulnerabilities may have a larger impact than in other industries.

Designed for Safety Rather than Security

When looking at the general architecture of the pump, it is obvious that it was designed with safety in mind. For instance, it relies on an application processor for the main processing but also has a control processor that makes sure nothing unexpected occurs by monitoring sensors output along with other components. Everything is CRC checked multiple times to flag memory corruption and every range is bounds-checked. All of this suggests that the design was intended to mitigate hardware and software faults, data accidentally being corrupted over the wire, and the flash module degrading which aligns with a high priority on safety.

However, it looks like preventing malicious intent was not given as much attention during the design process. Sometimes the difference between safety and security might be a little blurry. Preventing accidental memory corruption and out of bounds access due to faulty hardware will also make exploitation harder, yet an attacker will always attempt to escape these mitigations. Along the same lines, logic bugs that would be extremely unlikely to occur by chance might be the “keys to the kingdom” for an attacker. Internal audits and offensive security exercises can highlight the attacker mindset and bring valuable insights as how to harden existing safeguards to protect against intentional threats.

Everything is Trusted

When looking at how the pump and its communication module handles communication and file handling, we observed that critical files are not signed (CVE-2021-33885), most of the data exchanges are done in plain-text (CVE-2021-33883), and there is an overall lack of authentication (CVE-2021-33882) for the proprietary protocols being used. There are a few password-protected areas for user facing systems, but not as many for the behind-the-scenes internal systems. This might be because a login page on a website is an “obvious” necessity, along with having a proper authentication mechanism for FTP and SSH, while ad-hoc protocols designed more customized uses are not as obvious. There is also an evolving landscape at play and its related threat assessment; the risk of an unauthorized person tampering with a configuration file (calibration data, drug library, etc.) is fairly low if it also requires dedicated software and physical access to the device. However, if suddenly the device becomes network-connected, the attack surface is extended and the original assumptions may not be refreshed. Defense-in-depth would dictate that in any case, important files should not be easy to tamper with. However, security vs functionality comes with legitimate compromises and when it comes to embedded devices, limited resources and usability also need to be factored into the equation.

CAN gets Connected to WIFI

Originally, the CAN bus was reserved for communication between trusted components such as a Servicing PC used for maintenance or for connecting multiples devices within an older model of the Space Station that did not have SpaceCom built in. The latter would come as an optional module that could be plugged into the Space Station to offer external connectivity. Hence, the CAN bus was used for “internal” communication between trusted components and an external module, the SpaceCom, could be added for data reporting over the network. Over the following decade, technology improved and miniaturized to the point where everything got merged, so that even a battery module could provide WIFI connectivity and the SpaceCom functionalities. This opened new possibilities, such as having the built-in SpaceCom module provide similar capabilities as the servicing PC. From a user perspective this is great as it simplifies operations, but from a security perspective, this created a situation where a “trusted” internal network suddenly became bridged to an external network that could even be accessed wirelessly. What might have been an acceptable risk, where only a few proprietary devices with physical access could perform privileged operations, became much more questionable when a WIFI-connected Linux device started to offer the same capabilities.

This kind of problem has been faced by nearly every industry vertical that evolved from reliance on trusted physical networks which suddenly got connected to the internet or other untrusted networks. Smart connected devices are a double-edged sword: in the same way they offer greater flexibility and synergy between systems, they can also lead to emergent security issues that need to be considered holistically.

Technical Debt

When developing custom protocols and ad-hoc systems it’s natural to incur technical debt. This is even more true when the life cycle of a device is many years and when it is complicated and expensive to deploy patches and upgrades, leading to a heterogeneous customer base and multiple hardware revisions to support. This can cause situations where more obscure features are not looked at for years and their ownership might be lost or perfunctory. An example of this is the format string vulnerability affecting the json-dbus module. Its usage is obscure, and it was forked from an open-source project many years ago. The original repository fixed bugs that were security bugs but were not flagged as such which led them to fly under the radar for multiple years. Likely, at the time it was forked, the code served its purpose and was never revisited afterwards, leaving the security bug unnoticed. The same can be said for custom-designed protocols and file formats. It may be difficult to evolve them in line with the improvement of best security practices while avoiding breaking “legacy” deployments. In this scenario, mitigations might be the way to go; making sure the systems are isolated, unnecessary features can be disabled and their privilege and access limited to what’s needed. Future-proofing a system is a difficult challenge. If anything, transparency on how the system functions and the components it relies on, coupled with regular audits (code source review or black box audit) can help prevent components from falling in the cracks where they’re not checked against best practices for many years.

Conclusion

This concludes a research project which took two senior researchers a significant amount of time to showcase a life-threatening risk of a medical device being taken over by a remote attacker. For the time being, ransomware attacks are a more likely threat in the medical sector, but eventually these networks will be hardened against this type of attacks and malicious actors will look for other lower-hanging fruits. Given the lifespan of medical devices and the difficulties surrounding their updates, it is important to start planning now for tomorrow’s threats. We hope this research will help bring awareness to an area that has been a blind spot for far too long. Dr. Nordeck affirms the importance of this research stating: “The ability to manipulate medical equipment in a way that is potentially harmful to patients, without end-user detection, is effectively weaponizing the device and something only previously conceived by Hollywood yet, McAfee’s ATR team has confirmed is plausible. Device manufactures clearly aim to produce safe and secure products as evidenced by built-in safeguards. However, flaws may exist which allow the device to succumb to a ransom attack or potentially cause harm. Therefore, manufactures should collaborate with security professionals to independently test their products to detect and correct potential threats and thereby preserve patient safety and device security.”

Performing regular security audits, making it easier for medical professionals to keep their devices up to date and offering solid mitigations when this is not possible should really be on every medical vendor’s list of priorities. Medical professionals, policy makers and even the general public should also hold accountable the medical vendors and have them clearly articulate the risk profile of the devices they sell and demand better ways to keep their device secure. We recognize even with this mindset and a holistic approach to security, there will always be flaws that cannot be predetermined. In these cases, vendors should encourage and even seek out industry partners, embrace responsible disclosure and communicate broadly with researchers, stakeholders and customers alike.

From a security research perspective, it is crucial to understand how a device works at a holistic system level, and how each component interacts with each other, which components they can talk to, and so on. For manufacturers, it is important to read between the lines; something may not be in a design document or in the specifications, but sometimes emergent properties will occur as a side-effect of other design decisions.

An offensive project like ours is really meant to highlight structural weaknesses and point out risks. Now, defensive work is necessary to address these concerns. For instance, manufacturers should leverage cheaper and more powerful microcontrollers to implement proper authentication mechanisms. However, it is even more important to study and address the challenges hospitals face when it comes to keeping their devices up to date. This should come as both technical solutions from the vendors and advocacy to promote secure practices and raise awareness on the underlying risks associated with critical devices having outdated software. The FDA tried to lead the way in 2018 with its CyberMed Safety (Expert) Analysis Board (CYMSAB), but so far little progress has been made. The work the German BSI did with the ManiMed project is also extremely encouraging. We see this as an area of cybersecurity with lots of potential and need for attention and look forward to the information security industry taking on this challenge to make this critical sector always more secure.

One goal of the McAfee Advanced Threat Research team is to identify and illuminate a broad spectrum of threats in today’s complex and constantly evolving landscape. As per McAfee’s vulnerability public disclosure policy, McAfee’s ATR team informed and worked directly with the B.Braun team. This partnership resulted in the vendor working towards effective mitigations of the vulnerabilities detailed in this blog. We strongly recommend any businesses using the B.Braun Infusomat devices to update as soon as possible in line with your patch policy and testing strategy.

CVE Details

CVE: CVE-2021-33882

CVSSv3 Rating: 6.8/8.2

CVSS String: AV:N/AC:H/PR:N/UI:N/ S:C/C:N/I:H/A:N/CR:H/IR:H/AR:M/MAV:A

CVE Description: Missing Authentication for Critical Function vulnerability in BBraun SpaceCom2 prior to 012U000062 allows a remote attacker to reconfigure the device from an unknown source through lack of authentication on proprietary networking commands.

CVE: CVE-2021-33883

CVSSv3 Rating: 5.9/7.1

CVSS String: AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:H/A:N/CR:H/IR:H/AR:M/MAV:A

CVE Description: Cleartext Transmission of Sensitive Information vulnerability in BBraun SpaceCom2 prior to 012U000062 allows a remote attacker to obtain sensitive information by snooping the network traffic.  The exposed data includes critical values for the pumps internal configuration.

CVE: CVE-2021-33884

CVSSv3 Rating: 7.3/5.8

CVSS String: AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:L/CR:M/IR:M/AR:L/MAV:A

CVE Description: Unrestricted Upload of File with Dangerous Type vulnerability in BBraun SpaceCom2 prior to 012U000062 allows remote attackers to upload any files to the /tmp directory of the device through the webpage API.  This can result in critical files being overwritten.

CVE: CVE-2021-33885

CVSSv3 Rating: 10.0/9.7

CVSS String: AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:N/CR:H/IR:H/AR:M/MAV:A

CVE Description: Insufficient Verification of Data Authenticity vulnerability in BBraun SpaceCom2 prior to 012U000062 allows a remote unauthenticated attacker to send malicious data to the device which will be used in place of the correct data.  This results in execution through lack of cryptographic signatures on critical data sets

CVE: CVE-2021-33886

CVSSv3 Rating: 8.1/7.7

CVSS String: AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N/RL:O/RC:C

CVE Description: Improper sanitization of input vulnerability in BBraun SpaceCom2 prior to 012U000062 allows a remote unauthenticated attacker to gain user level command line access through passing a raw external string straight through to printf statements.  The attacker is required to be on the same network as the device.

The post McAfee Enterprise ATR Uncovers Vulnerabilities in Globally Used B. Braun Infusion Pump appeared first on McAfee Blog.

Overmedicated: Breaking the Security Barrier of a Globally Deployed Infusion Pump

By Douglas McKee

Cyberattacks on medical centers are one of the most despicable forms of cyber threat there is. For instance, on October 28th, 2020, a cyberattack at the University of Vermont Medical Center in Burlington VT led to 75% of the scheduled chemotherapy patients being turned away. Many of us have friends and loved ones who have had to undergo intensive treatments, and the last thing we want in this situation is for their critical care to be delayed due to on-going cyberattacks. Yet, as concerning as ransom attacks can be, what if the process of receiving the treatment was an even bigger threat than a system-wide ransomware event?

McAfee’s Enterprise Advanced Threat Research team, in partnership with Culinda, have discovered a set of vulnerabilities in B. Braun Infusomat Space Large Volume Pump and the B. Braun SpaceStation.

McAfee Enterprise ATR remotely hacks a B.Braun Infusomat Pump

These critical vulnerabilities could allow an attacker to conduct remote network attacks and modify the amount of medication a patient will receive through infusion. This modification could appear as a device malfunction and be noticed only after a substantial amount of drug has been dispensed to a patient, since the infusion pump displays exactly what was prescribed, all while dispensing potentially lethal doses of medication. This attack scenario is made possible through a chain of known and previously unknown vulnerabilities found by McAfee Enterprise ATR. A critical component of this attack is that the pump’s operating system does not verify who is sending commands or data to it, allowing an attacker to carry out remote attacks undetected. For those looking for a more technical analysis of the vulnerabilities, an in-depth blog can be found here.

History and Industry Insights

From the 1960’s to 2000, infusion pumps were mostly electromechanical devices with an embedded operating system, but the turn of the century delivered “smarter” devices with better safety mechanisms and the possibility to program them, which slowly opened the door to computer security challenges. Today, it is estimated that there are over 200 million IV infusions administered globally each year. The infusion pump market is a clear potential target for attackers. The market is valued at an estimated $54 billion in annual revenue, with 2020 sales of IV pumps in the US at $13.5 billion. IV pumps are inherently trusted to be secure and have over time become the mainstay for efficient and accurate infusion delivery of medication. B. Braun is one of the key market share holders in this rapidly growing market, emphasizing the impact of these vulnerability discoveries.

Industry personnel can be the best source of information for determining impact. Shaun Nordeck, M.D, an Interventional Radiology Resident Physician at a Level 1 Trauma Center, prior Army Medic and Allied Health Professional, with more than 20 years in the medical field, states that: “Major vulnerability findings like the ones reported by McAfee’s Enterprise Advanced Threat Research team are concerning for security and safety minded medical staff. The ability to remotely manipulate medical equipment undetected, with potential for patient harm, is effectively weaponizing these point of care devices. This is a scenario previously only plausible in Hollywood, yet now confirmed to be a real attack vector on a critical piece of equipment we use daily. The ransomware attacks that have targeted our industry rely on vulnerabilities just like these; and is exactly why this research is critical to understanding and thwarting attacks proactively.”

These vulnerabilities were reported to B. Braun beginning in January 2021 through McAfee’s responsible disclosure program. Through ongoing dialog, McAfee Enterprise ATR have learned that the latest version of the pump removes the initial network vector of the attack chain. Despite this, an attacker would simply need another network-based vulnerability and all remaining techniques and vulnerabilities reported could be used to compromise the pumps. Additionally, the vulnerable versions of software are still widely deployed across medical facilities and remain at risk of exploitation. Until a comprehensive suite of patches is produced and effectively adopted by B. Braun customers, we recommend medical facilities actively monitor these threats with special attention, and follow the mitigations and compensating controls provided by B. Braun Medical Inc. in their coordinated vulnerability disclosure documentation.

Call to Action

This concludes a research project which took two senior researchers a significant amount of time to showcase a life-threatening risk of a medical device being taken over by a remote attacker. For the time being, ransomware attacks are a more likely threat in the medical sector, but eventually these networks will be hardened against this type of attack and malicious actors will look for other lower-hanging fruits.

The unfortunate reality is that individuals can’t do much to prevent or mitigate these enterprise-level risks, outside of staying mindful of security issues and maintaining awareness of possible threats. However, the good news is that security researchers continue to propel this industry towards a safer future through responsible disclosure. We strongly encourage vendors to embrace vulnerability research and consumers to demand it. The medical industry has lagged severely behind others in the realm of security for many years – it’s time throw away the digital “band-aids” of slow and reactive patching, and embrace a holistic “cure” through a security-first mindset from the early stages of development, combined with a rapid and effective patch solution.

Braun Medical Inc. Statement

In May 2021, B. Braun Medical Inc. disclosed information to customers and the Health Information Sharing & Analysis Center (H-ISAC) that addressed the potential vulnerabilities raised in McAfee’s report, which were tied to a small number of devices utilizing older versions of B. Braun software. Our disclosure included clear mitigation steps for impacted customers, including the instructions necessary to receive the patch to eliminate material vulnerabilities.

Braun has not received any reports of exploitation or incidents associated with these vulnerabilities in a customer environment.

The post Overmedicated: Breaking the Security Barrier of a Globally Deployed Infusion Pump appeared first on McAfee Blog.

Help! I Think My Phone’s Been Hacked

By Natalie Maxfield

“My phone’s been hacked!” Words you probably don’t want to hear or say. Ever. 

Your phone gets to be like an old friend after a while. You have things laid out the way you like, your favorite apps are at the ready, and you have the perfect home screen and wallpaper all loaded up. So, if you unlock your phone one day and notice that something is a little … off, you’ll know pretty quickly. And it could be a sign that your phone may be hacked.  

How to know if your phone is hacked? 

It’s often pretty easy to tell when a piece of your tech isn’t working quite right. The performance is off, things crash, and so on. While there are several cases where there’s a legitimate technical issue behind that, it could also be the sign of a hacked device.  

Many hacks and attacks involve the installation of malware on the device, which eats up system resources, creates conflicts with other apps, and uses your data or internet connection to pass along your personal information—all of which can make your smartphone feel a little off. 

A few examples follow. Note that these may be signs of a hacked phone, yet not always. 

Performance hits and battery drain 

A suddenly sluggish phone or one that simply can’t hold a charge anymore are often attributed to phones that are getting a little old (these things happen). Yet, those same behaviors can also be signs of a compromised phone. For example, malicious bitcoin miners can run in the background and cause all types of performance issues because they eat up battery life and take up resources that your phone could otherwise normally use. In a way, it’s like having a second person using your phone at the same time you are. 

Your phone feels like it’s running hot 

Similar to the performance issues mentioned above, malware or mining apps running in the background can burn extra computing power, battery life, and data. Aside from a performance hit, they can cause your phone to physically run hot or even overheat. So if your phone feels like it’s been sitting in the sun, this could be a sign that malware is present. 

Popups suddenly appear on your phone 

If you’re seeing more popup ads than usual or seeing them for the first time, it could be a sign that your phone has been hit with adware—a type of malicious app that hackers use to generate revenue by distributing ads without the consent of the user. Furthermore, those ads may be malicious in nature as well (which is a good reminder to never click on them). Such ads may lead to bogus products and services or pages designed to steal personal information. All in all, malicious adware is what hackers prop up to make money off unsuspecting people. 

Mysterious apps, calls, or texts appear 

A potential telltale sign that your phone has been hacked is the appearance of new apps that you didn’t download, along with spikes in data usage that you can’t account for. Likewise, if you see calls in your phone bill that you didn’t make, that’s a warning as well. 

You run out of data or see unknown charges pop up 

Big red flag here. Like seeing an unknown charge or payment in your bank statement, this is a possible sign that a hacker has hijacked your phone and is using it to transfer data, make purchases, send messages, or make calls via your phone.  

What to do if your phone is hacked? 

  • Install and run security software on your smartphone if you haven’t already. From there, delete any apps you didn’t download, delete risky texts, and then run your mobile security software again. 
  • If you still have issues, wiping and restoring your phone is an option. Provided you have your photos, contacts, and other vital info backed up in the cloud, it’s a relatively straightforward process. A quick search online can show how to wipe and restore your model of phone. 
  • Lastly, check your accounts and your credit card statements to see if any unauthorized purchases have been made. If so, you can go through the process of freezing those accounts and getting new cards and credentials issued. Further, update your passwords for your accounts with a password that is strong and unique to prevent further theft.  

Five tips to keep your phone from getting hacked  

To help keep your phone from getting hacked in the first place, there are a few relatively easy steps you can take. Inside of a few minutes, you can find yourself much safer than you were before.  

1. Use comprehensive security software on your phone. Over the years, we’ve gotten into the good habit of using this on our computers and laptops. Our phones? Not so much. Installing security software on your smartphone gives you the first line of defense against attacks, plus several of the additional security features mentioned below. 

2. Stay safer on the go with a VPN. One way that crooks can hack their way into your phone is via public Wi-Fi, such as at airports, hotels, and even libraries. These networks are public, meaning that your activities are exposed to others on the network—your banking, your password usage, all of it. One way to make a public network private is with a VPN, which can keep you and all you do protected from others on that Wi-Fi hotspot.  

3. Use a password manager. Strong, unique passwords offer another primary line of defense. Yet with all the accounts we have floating around, juggling dozens of strong and unique passwords can feel like a task—thus the temptation to use (and re-use) simpler passwords. Hackers love this because one password can be the key to several accounts. Instead, try a password manager that can create those passwords for you and safely store them as well. Comprehensive security software will include one. 

4. Avoid public charging stations. Charging up at a public station seems so simple and safe. However, some hackers have been known to “juice jack” by installing malware into the charging station. While you “juice up,” they “jack” your passwords and personal info. So what to do about power on the road? You can look into a portable power pack that you can charge up ahead of time or run on AA batteries. They’re pretty inexpensive and can prevent malware from a public charging station.  

5. Keep your eyes on your phone. Preventing the actual theft of your phone is important too, as some hacks happen simply because a phone falls into the wrong hands. This is a good case for password or PIN protecting your phone, as well as turning on device tracking so that you can locate your phone or even wipe it remotely if you need to. Apple provides iOS users with a step-by-step guide for remotely wiping devices and Google offers up a guide for Android users as well.  

Phone acting funny? Follow up. 

A phone that’s acting a little funny may indicate a run-of-the-mill tech issue, yet it could also be a tell-tale sign of a hack. At a minimum, following up on your gut instinct that something isn’t quite right can take care of a nagging tech issue. But in the event of a possible hack, it can save you the far greater headache of unauthorized charges and purchases, and even identity theft. If you spot a problem, it absolutely pays to take a closer look. Follow up with tech support for help, whether that’s through your device manufacturer, retailer, or your antivirus providers. They’ll help pinpoint the issue and get you on your way. 

The post Help! I Think My Phone’s Been Hacked appeared first on McAfee Blog.

Access Granted: How the DoD Can Stay Cyber-Resilient

By Christie Karrels

Now more than ever, it’s critical to be mission-ready for the next cyber threat. Our digital-first, post-pandemic world is shifting back to a new normal. But the threats are still here.

Mission-Ready

And according to many reports, the threats have – and are continuing to – increase. McAfee Enterprise’s Advanced Threat Research recently published a report highlighting some of the biggest cyber stories dominating the year thus far, including recent ransomware attacks. While the topic itself is not new, there is no question that the threat is now truly mainstream. In fact, the June report provides a deep dive into the DarkSide ransomware, which resulted in an agenda item in talks between U.S. President Biden and Russian President Putin.

Rising Up

So how does the DoD approach modern-day threats like this? McAfee Enterprise’s online cyber training program is a great place to start. I’m proud to say the program is complimentary for our DoD partners and provides anywhere from 1-6 Continuing Professional Education (CPE) hours per course. You can login anywhere in the world to access the various trainings. Plus, the digital course are valid for 30 days from your registration date, so you can start and stop at any time. Not surprisingly, the tech industry is seeing a greater acceptance and return on investment from online training programs. Within the DoD for example, the Airforce recently launched Digital University. Airmen are elevating their digital literacy skills with up to 12,000 courses to better serve our country, while discovering new career paths in the process. Everything from leadership and public speaking to cloud computing and cybersecurity are covered, proving this platform may be the future of IT training.

Access Granted

I know the cyber industry that I joined 20+ years ago isn’t the same as it is today. And without access to trainings and CPE courses, my skill set would not be as strong. But if your day is anything like mine, finding time to squeeze in continuing education courses is a challenge. However, after hearing feedback from a long-time DoD partner, I know we’re on to something good. Success stories like these remind me of the importance of staying cyber-resilient in the field.

Don’t forget to reach out to your McAfee Enterprise Account Executive for your unique DoD voucher code!

 

The post Access Granted: How the DoD Can Stay Cyber-Resilient appeared first on McAfee Blog.

Executive Spotlight: Q&A with EMEA Senior Vice President, Adam Philpott

By Melissa Gaffney

Welcome back to our executive blog series, where we’re sitting down with some of the pivotal players behind McAfee Enterprise to hear their takes on today’s security trends, challenges, and opportunities for enterprises across the globe.

Q: Do you have a role model? If so, who is it?

Well, there are work and there are more personal role models. At work, I have several past and present role models I’ve met across my career that share the same traits. They’re typically great leaders who lead authentically and with a strong sense of purpose and values. For these, I often think when facing a challenge, “What would he or she do?”

Personally, I have many people who have inspired me. A current, topical favorite is Gareth Southgate – manager of the England national football team. He’s not only achieved great success in getting the team to their first final in over 50 years but has challenged the status quo by focusing on young talent and has played a pivotal role as a visible leader in support of diversity.

Q: What’s the most important thing happening in your field at the moment? 

The pandemic, coupled with the ongoing digitization of society, are probably the two most dominant topics in the cyber domain. Ransomware and cyber threats continue to rise in profile, as does cyber security and information assurance in the macro, geo-political sphere. Our purpose has never been greater as leaders in this field.

Q: Will zero trust be a requirement for agencies?

Yes. Organizations deliver outcomes through partnerships, both at a human and systems level. Implementing mechanisms to ensure trust is increasingly important as these partnerships increasingly digitize in operation. Thinking of zero trust as an architecture and framework matters. Many suppliers articulate zero trust as a feature. It is not. As a true partner, it’s important to consider its role more broadly, to not trust and always verify, not just a virtual choke point (remember, there is no perimeter), but throughout the data journey.

Q: What was your mindset to build your team and establish the right culture to drive success for the new company and continue to strive for new goals in the future?

In building a team with the culture to drive growth, the most fundamental attributes I seek in every team member is attitude and energy. Those are the power and velocity needed as a foundation. It’s amazing what people can achieve, and how they find ways to do so, with those fundamental ingredients.

When you combine a group of those people with a common goal and assign each a clear role to play, you end up with a phenomenal team. Rather than offering either no parameters, or parameters that are too narrow, you must empower them with a framework in which they can innovate and find ways to win. This is critical – giving them the scope to use their talent for a positive outcome. Listen to them. Hiring great people who push boundaries brings a lot of intellect and creativity. It’s a waste of intelligence if you don’t take the time to learn from them to continuously improve the business.

 

The post Executive Spotlight: Q&A with EMEA Senior Vice President, Adam Philpott appeared first on McAfee Blog.

How Fraudsters Are Fooling Users With This Proof of Vaccination Phishing Scam

By Vishnu Varadaraj

You open your laptop and see an email from a healthcare organization that you don’t recognize. The subject line reads “URGENT – PROOF OF VACCINATION NEEDED.” Impulsively, you open the email and click on the link. You’re redirected to a website that asks you to enter your name, date of birth, Social Security Number, and a photo of your vaccine card. Scrambling, you enter the information and click “Submit.”  

As you continue to adapt your lifestyle to the ongoing public health precautions, it’s important to consider how these precautions can affect your digital health as well. According to the Washington Post, pandemic-related email scams are on the rise, especially with the delta variant surging. McAfee Labs’ April 2021 Threats Report found that COVID-19-themed cyber-attack detections increased 114% in Q3 and Q4 of 2020. Research also shows that COVID-19 phishing attempts in June 2021 increased 33%. With confusion around proof of vaccination and booster shots emerging, it’s likely that cybercriminals will take advantage.   

Phishing Scams Asking for Proof of Vaccination 

As employers re-evaluate their return-to-office plans, some are requiring proof of vaccination or negative COVID-19 test results. This creates a new opportunity for cybercriminals to exploit. Researchers have uncovered phishing emails disguised as human resources departments asking recipients to submit personally identifiable information about their vaccination status. Many of these types of emails contain links to fake login pages. If the recipient proceeds with entering their credentials and personal data, cybercriminals can use the consumer’s data to conduct credential stuffing attacks and hack their online profiles. This could lead to credit card fraud, data extraction, wire transfers, identity theft, and more.  

Phishing Scams Posing as Healthcare Organizations 

 With various organizations contacting individuals about potential virus exposure, testing and vaccination information, and other public health news, it’s important to remember that some of these organizations may not be what they say they are. That email from the healthcare company you’ve never heard of? It’s probably a cybercriminal in disguise. Some hackers are impersonating public health and government organizations, sending phishing emails in the hopes of collecting users’ names, Social Security Numbers, birthdates, and other valuable data. Criminals tend to sell this information on the dark web, making a profit while the recipients’ online safety is put in jeopardy.  

Guard Yourself Against Phishing  

As more news and recommendations for dealing with the pandemic continues to emerge, it’s important that you stay vigilant when it comes to protecting your digital wellness. After all, it’s just as important as your physical wellness! In addition to staying updated on the latest COVID-19-related scams, follow these tips to keep yourself secure from online threats like phishing scams:  

1. Verify the sender  

If you receive an email or text message from an organization that you’re unfamiliar with, do some sleuthing. Verify that the organization is legitimate. The same goes if you receive a message from an entity that you recognize. If your “HR department” or a “doctor’s office” contacts you and asks for personal information, reach out to them directly instead of replying directly or clicking on any links in the message. This can prevent you from interacting with a hacker in disguise.  

2. Look for misspellings or grammatical errors   

Oftentimes, hackers will use a URL for their spoofed website that is just one character off from the legitimate site. Before clicking on any website from an email asking you to act, hover over the link with your cursor. This will allow you to preview the URL and identify any suspicious misspellings or grammatical errors before navigating to a potentially dangerous website.  

3. Enable multi-factor authentication   

Multi-factor authentication requires that users confirm a collection of things to verify their identity—usually something they have, and a factor unique to their physical being—such as a retina or fingerprint scan. This can prevent a cybercriminal from using credential-stuffing tactics (where they will use email and password combinations to hack into online profiles) to access your network or account if your login details were ever exposed during a data breach and sold on the dark web.  

4. Sign up for an identity theft alert service  

An identity theft alert service warns you about suspicious activity surrounding your personal information, allowing you to jump to action before irreparable damage is done. McAfee Total Protection not only keeps your devices safe from viruses but gives you the added peace of mind that your identity is secure, as well.  

The post How Fraudsters Are Fooling Users With This Proof of Vaccination Phishing Scam appeared first on McAfee Blog.

Verisign Q2 2021 The Domain Name Industry Brief: 367.3 Million Domain Name Registrations in the Second Quarter of 2021

By Verisign
Q2 2021 Domain Name Industry Brief Report Cover

Today, we released the latest issue of The Domain Name Industry Brief, which shows that the second quarter of 2021 closed with 367.3 million domain name registrations across all top-level domains (TLDs), an increase of 3.8 million domain name registrations, or 1.0%, compared to the first quarter of 2021.1,2 Domain name registrations have decreased by 2.8 million, or 0.7%, year over year.1,2

Q2 2021 closed with 367.3 million domain name registrations across all TLDs.

Check out the latest issue of The Domain Name Industry Brief to see domain name stats from the second quarter of 2021, including:

This quarter’s The Domain Name Industry Brief also includes an overview of how Registration Data Access Protocol (RDAP) improves upon the legacy WHOIS protocol.

To see past issues of The Domain Name Industry Brief, please visit verisign.com/dnibarchives.


1. The figure(s) includes domain names in the .tk ccTLD. .tk is a ccTLD that provides free domain names to individuals and businesses. Revenue is generated by monetizing expired domain names. Domain names no longer in use by the registrant or expired are taken back by the registry and the residual traffic is sold to advertising networks. As such, there are no deleted .tk domain names. https://www.businesswire.com/news/home/20131216006048/en/Freenom-Closes-3M-Series-Funding#.UxeUGNJDv9s.

2. The generic top-level domain (gTLD), new gTLD (ngTLD) and ccTLD data cited in the brief: (i) includes ccTLD Internationalized Domain Names (IDNs), (ii) is an estimate as of the time this brief was developed and (iii) is subject to change as more complete data is received. Some numbers in the brief may reflect standard rounding.

The post Verisign Q2 2021 The Domain Name Industry Brief: 367.3 Million Domain Name Registrations in the Second Quarter of 2021 appeared first on Verisign Blog.

Executive Spotlight: Q&A with Chief Public Policy Officer, Tom Gann

By Melissa Gaffney

I’m back at it again with another round of our executive blog series. This week I had the privilege to speak with Tom Gann, our Chief Public Policy officer and he had some interesting things to say on the cyber security issues that are shaping public policy dialogue in Washington DC and other capitals around the world, and much much more.

Q: What is one event in your life that made you who you are today?

Teaching tennis. I know that teaching tennis is not an event, it’s a sport. For me it was a business at a young age that helped to change my life.

I grew up in Palo Alto, CA, when the town was middle-class. I went to Gunn High School when the school was very good at tennis – they had 10 undefeated seasons. My parents were kind enough to pay for tennis lessons and while I was only a so-so tennis player, my tennis coach thought that I would be a good teacher. And so, starting in the 11th grade, I began teaching tennis for a tennis shop in Menlo Park called the Better Backhand. Then later, when I was at Stanford, I started my own business teaching lessons on private tennis courts which helped me pay for school and a car.

Through this experience, I learned how to become a professional and most importantly, how to relate to people while helping them learn something valuable. I am amazed that many of the things I learned from teaching tennis still guide me today: treating people well, empowering them, and striving to get things done that matter.

Q: What are the biggest cyber security issues shaping the public policy dialogue in Washington DC and other capitals around the world?

The reality today, and likely in the future, is that the bad guys have and will continue to have the advantage. Bad guys need to be right one time to get into a government or company environment. The good guys, playing defense, need to be right every time. This reality is made more challenging by the fact that today’s typical new, best-in-class cyber security solution is often out of date in two years because the bad guys are great at innovating. At the same time, unfortunately, many organizations are too slow or too distracted to ensure all their cyber security solutions work effectively together.

The threats from nation states, criminal organizations, and terrorist groups is only getting bigger as time goes on – meaning our challenge continually grows, shifts, and evolves. Today, these actors are perfecting a wide range of ransomware strategies to blackmail all types of organizations in the public and private sectors.

Responsible governments and citizens need to demand real change, they need to push non-compliant nation states to commit to a basic level of fair play. The public and private sectors also need to work together to create a firewall against these bad actors who use ransomware to achieve such strategic objectives as profit and intimidation.

Q: What is the true value cloud security has brought to the government contracting and federal sectors? Why is there so much hype around this technology?

Everyone is moving to the cloud – private and public sector organizations as well as folks at home. This trend makes sense because the cloud is cost effective, reliable, and highly secure. However, the key in this shift is to make sure that government agencies have the flexibility to rapidly work with private sector experts – the data center, the enterprise software, and the cyber security leaders – to ensure long term success. Too often, I have seen government agencies use outdated procurement rules and processes that bog down progress. This often results in cloud and data center deployments, particularly when government agencies host these infrastructures, being completed with last generation solutions.

At the same time, outdated contracting rules can limit the ability of agencies to field the most up to date cyber security solutions. This challenge is becoming a bigger deal as agencies deploy multiple cloud solutions. These many cloud implementations create targets of opportunity for hackers who exploit security gaps between and among clouds, meaning agencies need to be proactive to ensure that their move to the cloud is safe and effective. Policymakers need to step up to the plate and modernize procurement rules and processes. Such support will help government agencies work quicker and more effectively to serve our citizens who demand first-class service from their government.

Q: How can our organization be the best partner to government agencies moving forward?

It is all about trust. Without trust you have noting. Working with the government, a company, or your neighbor down the street is the same – it all depends on trust. This means doing what you say you will do and working to overdeliver on your commitments.

 

The post Executive Spotlight: Q&A with Chief Public Policy Officer, Tom Gann appeared first on McAfee Blog.

How Groove Gang is Shaking up the Ransomware-as-a-Service Market to Empower Affiliates

By Max Kersten

Co-authored with Intel471 and McAfee Enterprise Advanced Threat Research (ATR) would also like to thank Coveware for its contribution.

Executive Summary

McAfee Enterprise ATR believes, with high confidence, that the Groove gang is associated with the Babuk gang, either as a former affiliate or subgroup. These cybercriminals are happy to put aside previous Ransomware-as-a-Service hierarchies to focus on the ill-gotten gains to be made from controlling victim’s networks, rather than the previous approach which prioritized control of the ransomware itself.

Introduction

For many years the world of Ransomware-as-a-Service (RaaS) was perceived as a somewhat hierarchical and structured organization. Ransomware developers would advertise their RaaS program on forums and gracefully open up slots for affiliates to join their team to commit crime. The RaaS admins would conduct interviews with potential affiliates to make sure they were skilled enough to participate. Historically, i.e., with CTB locker, the emphasis was on affiliates generating enough installs via a botnet, exploit kits or stolen credentials, but it has shifted in recent years to being able to penetrate and compromise a complete network using a variety of malicious and non-malicious tools. This essentially changed the typical affiliate profile towards a highly-skilled pen-tester/sysadmin.

Figure 1. Recruitment posting for CTB locker from 2014

Figure 2. Recruitment posting for REvil from 2020

Experts often describe the hierarchy of a conventional organized crime group as a pyramid structure. Historically, La Cosa Nostra, drug cartels and outlaw motor gangs were organized in such a fashion. However, due to further professionalization and specialization of the logistics involved with committing crime, groups have evolved into more opportunistic network-based groups that will work together more fluidly, according to their current needs.

While criminals collaborating in the world of cybercrime isn’t a novel concept, a RaaS group’s hierarchy is more rigid compared to other forms of cybercrime, due to the power imbalance between the group’s developers/admins and affiliates.

For a long time, RaaS admins and developers were prioritized as the top targets, often neglecting the affiliates since they were perceived as less-skilled. This, combined with the lack of disruptions in the RaaS ecosystem, created an atmosphere where those lesser-skilled affiliates could thrive and grow into very competent cybercriminals.

However, this growth isn’t without consequences. Recently we have observed certain events that might be the beginning of a new chapter in the RaaS ecosystem.

Cracks in the RaaS model

Trust in the cybercriminal underground is based on a few things, such as keeping your word and paying people what they deserve. Just like with legitimate jobs, when employees feel their contributions aren’t adequately rewarded, those people start causing friction within the organization. Ransomware has been generating billions of dollars in recent years and with revenue like that, it’s only a matter of time before some individuals who believe they aren’t getting their fair share become unhappy.

Recently, a former Conti affiliate was unhappy with their financial portion and decided to disclose the complete Conti attack playbook and their Cobalt Strike infrastructure online, as shown in the screenshot below.

Figure 3. Disgruntled Conti affiliate

In the past, ATR has been approached by individuals affiliated with certain RaaS groups expressing grudges with other RaaS members and admins, claiming they haven’t been paid in time or that their share wasn’t proportionate to the amount of work they put in.

Recently, security researcher Fabian Wosar opened a dedicated Jabber account for disgruntled cybercriminals to reach out anonymously and he stated that there was a high level of response.

Figure 4. Jabber group for unhappy threat actors

Moreover, the popular cybercrime forums have banned ransomware actors from advertising since the Colonial Pipeline attack. Now, the groups no longer have a platform on which to actively recruit, show their seniority, offer escrow, have their binaries tested by moderators, or settle disputes. The lack of visibility has made it harder for RaaS groups to establish or maintain credibility and will make it harder for RaaS developers to maintain their current top tier position in the underground.

Paying respects…. RAMP Forum and Orange

After a turbulent shutdown of Babuk and the fallout from the Colonial Pipeline and Kaseya attacks, it seems that some of the ransomware-affiliated cybercriminals have found a home in a forum known as RAMP.

Figure 5. RAMP posting by Orange, introducing Groove and explaining relationships

Translated Posting

When analyzing RAMP and looking at the posting above from the main admin Orange, it’s hard to ignore numerous references that are made: From the names chosen, to the avatar of Orange’s profile, which happens to be a picture of a legitimate cyber threat intelligence professional.

Orange

Hello, friends! I am happy to announce the first contest on Ramp.

Let’s make it clear that we don’t do anything without a reason, so at the end of the day, it’s us who will benefit most from this contest 🙂

Here’s the thing: besides my new projects and old, I have always had this unit called

GROOVE — I’ve never revealed its name before and it’s never been mentioned directly in the media, but it does exist — we’re like Mossad (we are few and aren’t hiring). It’s Groove whom the babuk ransomware needs to thank for its fame.

Groove rocks, and babuk stinks 🙂

Challenge: Using a PHP stack+MYSQL+Bootstrap, code a standard ransomware operators’ blog in THE RUSSIAN LANGUAGE with the following pages:

1) About us

The description of a group, which must be editable from the admin panel and use the same visual editor as our forum.

2) Leaks.

No hidden blogs, just leaks.

Use standard display, just like other ransomware operators’ blogs do.

3) News

A news page; it must be possible to add and edit news via the admin panel.

We’ll be accepting your submissions up to and including August 30.

Who will rate the entries and how?

There will be only one winner. I, Orange, will rate the usability and design of blogs. MRT will rate each entry’s source code and its security. In addition to USD 1k, the winner will most likely get a job in the RAMP team!

Now, for those of you who are interested in entirely different things:

1) No, we are not with the Kazakh intelligence agency.

https://www.fr.sogeti.com/globalassets/france/avis-dexperts–livres-blancs/cybersecchronicles_-_babuk.pdf

2) Groove has never had a ransomware product, nor will that ever change.

3) The babuk team doesn’t exist. We rented the ransomware from a coder who could not shoulder the responsibility, got too scared and decided to leave an error in the ESX builder — naturally, to give us a reason to chuck him out (his motives? Fxxx if I know)

babuk 2.0, which hit the headlines, is not to be taken seriously and must be regarded as nothing but a very stupid joke

4) GROOVE is first and foremost an aggressive financially motivated criminal organization dealing in industrial espionage for about two years. RANSOMWARE is no more than an additional source of income. We don’t care who we work with and how. You’ve got money? We’re in

RAMP Ransom Anon Mark[et] Place

RAMP was created in July 2021 by a threat actor TetyaSluha, who later changed their moniker to ‘Orange.’ This actor claimed the forum would specifically cater to other ransomware-related threat actors after they were ousted from major cybercrime forums for being too toxic, following the high-profile ransomware attacks against the Colonial Pipeline and Washington D.C.’s Metropolitan Police Department in the spring of 2021.

At the time of the initial launch, Orange claimed the forum’s name was a tribute to a now-defunct Russian-language underground drug marketplace, “Russian Anonymous Marketplace,” which was taken down by Russian law enforcement agencies in 2017.  The re-launched cybercrime forum’s name now supposedly stands for “Ransom Anon Mark[et] Place”.

The forum was initially launched on the same TOR-based resource that previously hosted a name-and-shame blog operated by the Babuk ransomware gang and the Payload.bin marketplace of leaked corporate data. The forum was later moved to a dedicated TOR-based resource and relaunched with a new layout and a revamped administrative team, where Orange acted as the admin, with other known actors MRT, 999 and KAJIT serving as moderators.

Why the name Orange?

Why the admin changed handles from TetyaSluha to Orange isn’t 100 percent clear. However, looking back, the early days of RAMP provides us some evidence on who this person has been affiliated with. We found a posting from  where the names Orange and Darkside are mentioned as potential monikers. Very shortly after that, TetyaSluha changed their handle to Orange. While the initial message has been removed from the forum itself, the content was saved thanks to Intel 471.

July 12th 2021 by Mnemo

Congratulations on the successful beginning of struggle for the right to choose and not to be evicted. I hope, the community will soon fill with reasonable individuals.

Oh yeah, you’ve unexpectedly reminded everyone about the wonderful RAMP forum. Are the handles Orange and Darkside still free?

The name Darkside might sound more familiar than Orange but, as we saw with the naming of RAMP, TetyaSluha is one for cybercrime sentiment, so there is almost certainly some hidden meaning behind it.

Based on ATR’s previous research, we believe the name Orange was chosen as a tribute to REvil/GandCrab. People familiar with those campaigns have likely heard of the actor UNKN’. However, there was a less well known REvil affiliate admin named Orange. A tribute seems fitting if Tetyasluha isn’t the notorious Orange as that moniker is tied to some successful ransomware families, GandCrab and REvilthat shaped the RaaS ecosystem as we know it today. 

In the past, UNKN was linked to several other monikers, however Orange was hardly mentioned since there wasn’t a matching public handle used on any particular cybercrime forum.  However, REvil insiders will recognize the name Orange as one of their admins.

Based on ATR’s closed-source underground research, we believe with a high level of confidence, that UNKN was indeed linked to the aforementioned accounts, as well as the infamous “Crab”handle used by GandCrab. Crab was one of the two affiliate-facing accounts that the GandCrab team had (The other being Funnycrab). We believe with a high level of confidence that after the closure of GandCrab, the individual behind the Funnycrab account changed to the account name to Orange and continued operations with REvil, with only a subset of skilled GandCrab affiliates, (as described in our Virus Bulletin 2019 whitepaper) since GandCrab grew too big and needed to shed some weight.

The posting in figure 5 is also shedding some light on the start of the Groove Gang, their relationship to Babuk and, subsequently, BlackMatter.

Groove Gang

In the post from Figure 5, “Orange” also claims to have always had a small group of people that the group collaborates with. Additionally, the actor claims that the name has not been mentioned in the media before, comparing the group to the Israeli secret service group Mossad. The group’s comparison to Mossad is extremely doubtful at best, given the drama that has publicly played out. Groove claims several of Babuk’s victims, including the Metropolitan Police Department, brought them a lot of attention. The several mentions to Babuk isn’t by mistake: we have evidence the two groups also have connections, which we’ve pieced together from examining the behavior of — and particularly the fallout between — the two groups.

Babuk’s Fallout

Originally, the Babuk gang paid affiliates by each victim they attacked. Yet on April 30, it was reported that the gang suddenly had stopped working with affiliates, including the act of encrypting a victim’s system. Instead, their focus shifted to data exfiltration and extortion of targeted organizations. That was followed by the group releasing the builder for the old versions of its ransomware as it pivoted to a new one for themselves.

The attention that Babuk drew by hacking and extorting the Metropolitan Police Department meant their brand name became widely known. It also meant that more firms and agencies were interested in finding out who was behind it. This kind of heat is unwanted by most gangs, as any loose ends that are out there can come back to bite them.

Then, on September 3, the threat actor with the handle ‘dyadka0220’ stated that they were the principal developer of Babuk ransomware and posted what they claimed was the Babuk ransomware source code. They claimed the reason they were sharing everything was due to being terminally ill with lung cancer.

Figure 6. Dyadka0220 was possibly the developer that Orange hinted at in the posting (Figure 5) mentioned above.

On September 7, the Groove gang responded with a blog on their own website, titled “Thoughts about the meaning”, which rhymes in Russian. In this blog, the gang (allegedly) provides information on several recent happenings. Per their statement, the illness of ‘dyadka0220’ is a lie. Additionally, their response alleges that the Groove gang never created the Babuk ransomware themselves, but worked with someone else to produce it.

The validity of the claims in Groove’s latest blog is hard to determine, although this does not matter too much: the Babuk group, including affiliates, had a fallout that caused the group to break up, causing the retaliation of several (ex-)members.

Observed Behavior

The ATR team has covered Babuk multiple times. The first blog, published last February, covers the initial observations of the group’s malware. The second blog, published last July, dives into the ESXi version of the ransomware and its issues. The group’s tactics, techniques, and procedures (TTPs) are in-line with commonly observed techniques from ransomware actors. The deployment of dual-use tools, which can be used for both benign and malicious purposes, is difficult to defend against, as intent is an unknown term for a machine. Together with other vendors we have narrowed down some of the TTPs observed by the Groove gang.

Initial Access

The actor needs to get a foothold within the targeted environment. The access can be bought, in terms of stolen (yet valid) credentials, or direct access in the form of a live backdoor on one or more of the victim’s systems. Alternatively, the actor can exploit publicly facing infrastructure using a known or unknown exploit. To ATR’s understanding, the latter has been used several times by exploiting vulnerable VPN servers.

Lateral Movement, Discovery and Privilege Escalation

Moving around within the network is an important step for the actor, for two reasons. Firstly, it allows the attacker to find as much data as possible, which is then exfiltrated. Secondly, access to all machines is required in order to deploy the ransomware at a later stage. By encrypting numerous devices at once, it becomes even harder to control the damage from a defender’s point of view. The actor uses commonly known tools, such as Ad-Find and NetScan, to gather information on the network. Based on the gathered information, the actor will move laterally through the network. One of the most frequently observed methods by this actor to do so, is by using RDP.

To work with more than user-level privileges, the actor has a variety of options to escalate their privilege to a domain administrator. Brute forcing RDP accounts, the dumping of credentials, and the use of legacy exploits such as EternalBlue (CVE-2017-0144), are ways to quickly obtain access to one or more privileged accounts. Once access to these systems is established, the next phase of the attack begins.

Data Exfiltration and Ransomware Deployment

The actor navigates through the machines on the network using the earlier obtained access. To exfiltrate the collected data, the attacker uses WinSCP. Note that other, similar, tools can also be used. Once all relevant data has been stolen, the attacker will execute the ransomware in bulk. This can be done in a variety of ways, ranging from manually starting the ransomware on the targeted machines, scheduling a task per machine, or using PsExec to launch the ransomware.

Linking Groove to Babuk and BlackMatter

As discussed above, there was a fallout within Babuk. From that fallout, a part of the group stayed together to form Groove. The server that Babuk used, which we will refer to as the “wyyad” server due to the ending of the onion URL, rebranded in late August 2021. The similarities can be seen in the two screenshots below.

Figure 7. The changes to the landing page from Babuk to Groove

Aside from this, data from old Babuk victims is still hosted on this server. The ATR team found, among others, leaks that belong to:

  • a major US sports team,
  • a British IT service provider,
  • an Italian pharmaceutical company,
  • a major US police department,
  • a US based interior shop.

All these victims have previously been claimed by (and attributed to) Babuk.

Another gang, known as BlackMatter, uses a variety of locations to host their extorted files, which can be done out of convenience or to avoid a single notice and takedown to remove all offending files. Additionally, the ATR team assumes, with medium confidence, that different affiliates use different hosting locations.

The data of one of the BlackMatter gang’s victims, a Thai IT service provider, is stored on the “wyyad” server. As such, it can mean that the Groove gang worked as an affiliate for the BlackMatter gang. This is in line with their claim to work with anybody, as long as they profit from it. The image below shows the BlackMatter leak website linking to the “wyyad” server.

Figure 8. screenshot of BlackMatter, where the data is stored on the Groove server

The Groove gang’s website contains, at the time of writing, a single leak: data from a German printing company. Even though the website is accessible via a different address, the leaked data is stored on the “wyyad” server.

Figure 9. Another Groove victim but stored on their own page

The affected company does not meet BlackMatter’s “requirements,” the group has said it only goes after companies that make more than $US 100 million. This company’s annual revenue is estimated at $US 75 million, as seen in the below screenshot.

Figure 10. Posting on the Exploit forum by BlackMatter

At the end of Orange’s announcement comes a call to action and collaboration: “GROOVE is first and foremost an aggressive financially motivated criminal organization dealing in industrial espionage for about two years. RANSOMWARE is no more than an additional source of income. We don’t care who we work with and how. You’ve got money? We’re in”.

The group’s primary goal, making money, is not limited to ransomware. Inversely, ransomware would be the cherry on top. This is yet another indication of the ransomware group’s shift to a less hierarchical set-up and a more fluid and opportunistic network-based way of working.

In the Groove gang’s blog on September 7, a reference is made with regards to BlackMatter, and its links to DarkSide. If true, these insights show that the Groove gang has insider knowledge of the BlackMatter gang. This makes the collaboration between Groove and BlackMatter more likely. If these claims are false, it makes one wonder as to why the Groove gang felt the need to talk about other gangs, since they seem to want to make a name for themselves.

Due to the above outlined actions ATR believes, with high confidence, that the Groove gang is a former affiliate or subgroup of the Babuk gang, who are willing to collaborate with other parties, as long as there is financial gain for them. Thus, an affiliation with the BlackMatter gang is likely.

Conclusion

Ever since Ransomware-as-a-Service became a viable, and highly profitable, business model for cybercriminals, it has operated in much the same way with affiliates being the sometimes underpaid workhorses at the bottom of a rigid pyramid shaped hierarchy.

For some affiliates there was an opportunity to become competent cybercriminals while, for many others, the lack of recompense and appreciation for their efforts led to ill-feeling. Combined with underground forums banning ransomware actors, this created the perfect opportunity for the threat actor known as Orange to emerge, with the Groove gang in tow, with the offer of new ways of working where an associate’s worth was based entirely on their ability to earn money.

Time will tell if this approach enhances the reputation of the Groove gang to the level of the cybercriminals they seem to admire. One thing is clear though; with the manifestation of more self-reliant cybercrime groups the power balance within the RaaS eco-climate will change from he who controls the ransomware to he who controls the victim’s networks.

MITRE TTPs

We have compiled a list of TTPs based on older Babuk cases and some recent cases linked to Groove:

  • T1190: Exploit Public-Facing Application (VPN services)
  • T1003: OS Credential Dumping
  • 002: Valid Accounts: Domain Accounts
  • T1059: Command and Scripting Interpreter
  • T1021:002: SMB/Windows Admin Shares
  • T1210: Exploitation of Remote Services
  • T1087: Account Discovery
  • T1482: Domain Trust Discovery
  • T1562: Impair Defense
  • T1537: Transfer Data to Cloud Account
  • T1567: Exfiltration Over Web Service

If a partnership is achieved with a Ransomware family:

  • T1486 Data Encrypted for Impact

The post How Groove Gang is Shaking up the Ransomware-as-a-Service Market to Empower Affiliates appeared first on McAfee Blog.

Afilias’ Rule Violations Continue to Delay .WEB

By Kirk Salzmann
Verisign Logo

As I noted on May 26, the final decision issued on May 20 in the Independent Review Process (IRP) brought by Afilias against the Internet Corporation for Assigned Names and Numbers (ICANN) rejected Afilias’ petition to nullify the results of the public auction for .WEB, and it further rejected Afilias’ demand to have it be awarded .WEB (at a price substantially lower than the winning bid). Instead, as we urged, the IRP Panel determined that the ICANN Board should move forward with reviewing the objections made about .WEB, and to make a decision on delegation thereafter.

Afilias and its counsel both issued press releases claiming victory in an attempt to put a positive spin on the decision. In contrast to this public position, Afilias then quickly filed a 68-page application asking the Panel to reverse its decision. This application is, however, not permitted by the arbitration rules – which expressly prohibit such requests for “do overs.”

In addition to Afilias’ facially improper application, there is an even more serious instance of rule-breaking now described in a July 23 letter from Nu Dot Co (NDC) to ICANN. This letter sets out in considerable detail how Afilias engaged in prohibited conduct during the blackout period immediately before the .WEB auction in 2016, in violation of the auction rules. The letter shows how this rule violation is more than just a technicality; it was part of a broader scheme to rig the auction. The attachments to the letter shed light on how, during the blackout period, Afilias offered NDC money to stop ICANN’s public auction in favor of a private process – which would in turn deny the broader internet community the benefit of the proceeds of a public auction.

Afilias’ latest application to reverse the Panel’s decision, like its pre-auction misconduct 5 years ago, has only led to unnecessary delay of the delegation of .WEB. It is long past time for this multi-year campaign to come to an end. The Panel’s unanimous ruling makes clear that it strongly agrees.

The post Afilias’ Rule Violations Continue to Delay .WEB appeared first on Verisign Blog.

McAfee Enterprise Defender’s Blog: Operation Harvest

By Mo Cashman

Summary

McAfee Enterprise’s Advanced Threat Research (ATR) team provided deep insight into a long-term campaign Operation Harvest. In the blog, they detail the MITRE Tactics and Techniques the actors used in the attack. In this blog, our Pre-Sales network defenders describe how you can defend against a campaign like Operation Harvest with McAfee Enterprise’s MVISION Security Platform and security architecture best practices.

Defending Against Operation Harvest with McAfee

Operation Harvest, like other targeted attack campaigns, leverages multiple techniques to access the network and capture credentials before exfiltrating data. Therefore, as a Network Defender you have multiple opportunities to prevent, disrupt, or detect the malicious activity. Early prevention, identification and response to potentially malicious activity is critical for business resilience. Below is an overview of how you can defend against attacks like Operation Harvest with McAfee’s MVISION Security Architecture.

Throughout this blog, we will provide some examples of where MVISION Security Platform could help defend against this type of attack.

Get Prepared with the Latest Threat Intelligence

As Network Defenders our goal is to prevent, detect and contain the threat as early as possible in the attack chain. That starts with using threat intelligence, from blogs or solutions like MVISION Insights to get prepared and using tools like MITRE Attack Navigator to assess your defensive coverage. The ATR blog details the techniques, indicators and tools used by the attackers. Many of the tools used in Operation Harvest are common across other threat actors and detection details for PlugX, and Winnti are already documented in MVISION INSIGHTS.

Get a quick overview of the PlugX tool:

Easily search for or export PlugX IOCs right from MVISION Insights:

Get a quick overview of the Winnti tool:

Easily search for or export Winnti IOCs right from MVISION Insights:

Cross Platform Hunting Rules for Winnti:

MVISION Insights is also updated with the latest technical intelligence on Operation Harvest including a summary of the threat, prevalence, indicators of compromise and recommended defensive countermeasures.

Defending Against Initial Access

In this attack, the initial access involved a compromised web server. Over the last year we have seen attackers increasingly use initial access vectors beyond spear-phishing, such as compromising remote access systems or supply chains. The exploiting of public-facing vulnerabilities for Initial Access is a technique associated with Operation Harvest and other APT groups to gain entry. Detecting this activity and stopping it is critical to limiting the abilities of the threat actor to further their execution strategy. Along with detecting the ongoing activity, it is also imperative to verify critical vulnerabilities are patched and configurations are security best practice to prevent exploitation. MVISION UCE provides visibility into threats, vulnerabilities, and configuration audits mapped to the MITRE ATT&CK Framework for protection against suspicious activity.

Many customer-facing applications and web servers are hosted on cloud infrastructure. As a Network Defender, gaining visibility and monitoring for misconfigurations on the infrastructure platforms is critical as this is increasingly the entry point for an attacker. MVISION Cloud Native Application Protection Platform (CNAPP) provides a continuous assessment capability for multiple cloud platforms in a single console so you can quickly correct misconfigurations and harden the security posture across AWS, AZURE or Google Cloud Platforms.

Harden the Server or Endpoint Against Malicious Tool use

The attackers uploaded several known or potentially malicious tools to compromised systems. Many of these tools were detected on installation or execution by ENS Threat Prevention or Adaptative Threat Prevention Module. The following is a sample of the Threat Event log from ePolicy Orchestrator (ePO) from our testing.

You can easily search for these events in ePO and investigate any systems with detections.

For best protection turn on Global Threat Intelligence (GTI) for both Threat Prevention and Adaptive Threat Protection modules. Ensure ATP Rules 4 (GTI File Reputation) and 5 (URL Reputation) are enabled in ATP. Global Threat Intelligence is updated with the latest indicators for this attack as well.

Additionally, based on other observables in this attack, we believe there are several other Adaptive Threat Prevention Rules that could prevent or identify potentially malicious activity on the endpoint or server. Monitor especially for these ATP events in the ePO threat event logs:

Rule 269: Detects potentially malicious usage of WMI service to achieve persistence

Rule 329: Identify suspicious use of Scheduled Tasks

Rule 336: Detect suspicious payloads targeting network-related services or applications via dual use tools

Rule 500: Block lateral movement using utilities such as Psexec from an infected client to other machines in the network

Rule 511: Detect attempts to dump sensitive information related to credentials via lsaas

Analysis will continue and additional ATP rules we think relate will be added to mitigation guidance in MVISION Insights.

ENS with Expert Rules

Expert Rules are a powerful, customizable signature language within ENS Threat Prevention Module. For this attack, you could use Expert Rules to identify potential misuse of Psexec or prevent execution or creation of certain file types used such as .rar files.

Additional guidance on creating your own Expert Rules and link to our repository are here:

How to Use Expert Rules in ENS to Prevent Malicious Exploits

ATR Expert Rule Repository

Per standard practice, we recommend that customers test this rule in report mode before applying in block mode.

Preventing or Detecting Command and Control

Like other attacks exploiting critical vulnerabilities, attackers may gain command and control over exploited systems to deliver payloads or other actions. MVISION EDR can both identify many command-and-control techniques such as Cobalt Strike beacons. In this case, MVISION EDR would have logged the DNS and HTTP connection requests to the suspicious domains and an SOC analysts could use Real Time and Historical search to hunt proactively for compromised machines.

Additionally, Unified Cloud Edge (UCE – SWG) can prevent access to risky web sites using threat intelligence, URL reputation, behaviour analysis and remote browser isolation. Ensure you have a strong web security policy in place and are monitoring logs. This is a great control to identify potentially malicious C2 activity.

Monitoring for Privilege Escalation

The adversary used several techniques and tools to elevate privileges and run Mimikatz to steal credentials. In our simulation, MVISION EDR proactively identified the attempt to download and execute in memory a Mimikatz PowerShell script.

We simulated the attacker malicious attempt using potato tools reproducing a generic privilege escalation. From the EDR monitoring process tree we could observe the sequence of events with a change in terms of user name from a user account to SYSTEM.”

We started a guided investigation on the affected system. Analytics on the data identified anomalies in user behavior. Guided investigations make easier to visualize complex data sets and interconnections between artifacts and systems.

Identifying Commonly used Tools for Lateral Movement

The attackers used a common dual use system utility, in this case Psexec.exe, to move laterally. In many cases, the malicious use of legitimate system tools is difficult to detect with signature-based detection only. MVISION EDR uses a combination of behaviour analytics and threat intelligence to proactively identify and flag a high severity alert on malicious use of Psexec for lateral movement.

Psexec.exe used for lateral movement:

Mapping User and Data Anomalies to Detect Exfiltration

The threat actors behind Operation Harvest utilized various tools to elevate privileges and exfiltrate data out of the impacted environment. Visualizing anomalies in user activity and data movement can be used to detect out of the ordinary behavior that can point to malicious activity going on in your environment. MVISION UCE will monitor user behavior and provide anomalies for the security team to pinpoint areas of concern for insider or external adversarial threats.

Identifying User Access Anomalies with UCE:

Identifying Data Transfer Anomalies with UCE:

Summary

MVISION Security Platform provides defense in depth to prevent, disrupt or detect many of the techniques used in Operation Harvest. As a network defender, focus on early prevention or detection of the techniques to better protect your organization against cyber-attacks.

The post McAfee Enterprise Defender’s Blog: Operation Harvest appeared first on McAfee Blog.

Operation ‘Harvest’: A Deep Dive into a Long-term Campaign

By Christiaan Beek

A special thanks to our Professional Services’ IR team, ShadowServer, for historical context on C2 domains, and Thomas Roccia/Leandro Velasco for malware analysis support.

Executive Summary

Following a recent Incident Response, McAfee Enterprise‘s Advanced Threat Research (ATR) team worked with its Professional Services IR team to support a case that initially started as a malware incident but ultimately turned out to be a long-term cyber-attack.

From a cyber-intelligence perspective, one of the biggest challenges is having information on the tactics, techniques, and procedures (TTPs) an adversary is using and then keeping them up to date. Within ATR we typically monitor many adversaries for years and collect and store data, ranging from indicators of compromise (IOCs) to the TTPs.

In this report, ATR provides a deep insight into this long-term campaign where we will map out our findings against the Enterprise MITRE ATT&CK model. There will be parts that are censored since we respect the confidentiality of the victim. We will also zoom in and look at how the translation to the MITRE Techniques, historical context, and evidence artifacts like PlugX and Winnti malware led to a link with another campaign, which we highly trust to be executed by the same adversary.

IOCs that could be shared are at the end of this document.

McAfee customers are protected from the malware/tools described in this blog. MVISION Insights customers will have the full details, IOCs and TTPs shared via their dashboard. MVISION Endpoint, EDR and UCE platforms provide signature and behavior-based prevention and detection capability for many of the techniques used  in this attack. A more detailed blog with specific recommendations on using the McAfee portfolio and integrated partner solutions to defend against this attack can be found here.

Technical Analysis

Initial Infection Vectors [TA0001]

Forensic investigations identified that the actor established initial access by compromising the victim’s web server [T1190]. On the webserver, software was installed to maintain the presence and storage of tools [T1105] that would be used to gather information about the victim’s network [T1083] and lateral movement/execution of files [T1570] [T1569.002]. Examples of the tools discovered are PSexec, Procdump, and Mimikatz.

Privilege Escalation and Persistence [TA0004TA0003]

The adversary has been observed using multiple privilege escalation and persistence techniques during the period of investigation and presence in the network. We will highlight a few in each category.

Besides the use of Mimikatz to dump credentials, the adversaries used two tools for privilege escalations [T1068]. One of the tools was “RottenPotato”. This is an open-source tool that is used to get a handle to a privileged token, for example, “NT AUTHORITY\SYSTEM”, to be able to execute tasks with System rights.

Example of RottenPotato on elevating these rights:

Figure 1 RottenPotato

The second tool discovered, “BadPotato”, is another open-source tool that can be used to elevate user rights towards System rights.

Figure 2 BadPotato

The BadPotato code can be found on GitHub where it is offered as a Visual Studio project. We inspected the adversary’s compiled version using DotPeek and hunted for artifacts in the code. Inspecting the File (COFF) header, we observed the file’s compilation timestamp:

TimeDateStamp: 05/12/2020 08:23:47  – Date and time the image was created

PlugX

Another major and characteristic privilege escalation technique the adversary used in this long-term campaign was the malware PlugX as a backdoor. PlugX makes use of the technique “DLL Sideloading” [T1574.002]. PlugX was observed as usual where a single (RAR) executable contained the three parts:

  • Valid executable.
  • Associated DLL with the hook towards the payload.
  • Payload file with the config to communicate with Command & Control Server (C2).

The adversary used either the standalone version or distributed three files on different assets in the network to gain remote control of those assets. The samples discovered and analyzed were communicating towards two domains. Both domains were registered during the time of the campaign.

One of the PlugX samples consisted of the following three parts:

Filename Hashes
HPCustPartic.exe SHA256: 8857232077b4b0f0e4a2c3bb5717fd65079209784f41694f8e1b469e34754cf6
HPCustPartUI.dll SHA256: 0ee5b19ea38bb52d8ba4c7f05fa1ddf95a4f9c2c93b05aa887c5854653248560
HPCustPartic.bin SHA256: 008f7b98c2453507c45dacd4a7a7c1b372b5fafc9945db214c622c8d21d29775

The .exe file is a valid and signed executable and, in this case, an executable from HP (HP Customer participation). We also observed other valid executables being used, ranging from AV vendors to video software. When the executable is run, the DLL next to it is loaded. The DLL is valid but contains a small hook towards the payload which, in our case, is the .bin file. The DLL loads the PlugX config and injects it into a process.

We executed the samples in a test setup and dumped the memory of the machine to conduct memory analysis with volatility. After the basic forensically sound steps, we ran the malfind plugin to detect possible injected code in a process. From the redacted output of the plugin, we observed the following values for the process with possible injected code:

Process: svchost.exe Pid: 860 Address: 0xb50000

Process: explorer.exe Pid: 2752 Address: 0x56a000

Process: svchost.exe Pid: 1176 Address: 0x80000

Process: svchost.exe Pid: 1176 Address: 0x190000

Process: rundll32.exe Pid: 3784 Address: 0xd0000

Process: rundll32.exe Pid: 3784 Address: 0x220000

One observation is the mention of the SVCHOST process with a ProcessID value of 1176 that is mentioned twice but with different addresses. This is similar to the RUNDLL32.exe that is mentioned twice with PID 3785 and different addresses. One way to identify what malware may have been used is to dump these processes with the relevant PID using the procdump module, upload them to an online analysis service and wait for the results. Since this is a very sensitive case, we took a different approach. Using the best of both worlds (volatility and Yara) we used a ruleset that consists of malware patterns observed in memory over time. Running this ruleset over the data in the memory dump revealed the following (redacted for the sake of readability) output:

Figure 3 Output Yarascan memory dump

The output of the Yara rule scan (and there was way more output) confirmed the presence of PlugX module code in PID 1176 of the SVCHOST service. Also, the rule was triggered on PID 3784, which belonged to RUNDLL32.exe.

Investigating the dumps after dynamic analysis, we observed two domain names used for C2 traffic:

  • sery.brushupdata.com
  • dnssery.brushupdata.com

In particular, we saw the following hardcoded value that might be another payload being downloaded:

sery.brushupdata.com/CE1BC21B4340FEC2B8663B69

The PlugX families we observed used DNS [T1071.001] [T1071.004] as the transport channel for C2 traffic, in particular TXT queries. Investigating the traffic from our samples, we observed the check-in-signature (“20 2A 2F 2A 0D”) that is typical for PlugX network traffic:

00000000:            47 45 54 20 2F 42 34 42 42 44 43 43 30 32 39 45

00000010:            31 31 39 37 31 39 46 30 36 35 36 32 32 20 48 54

00000020:            54 50 2F 31 2E 31 0D 0A 41 63 63 65 70 74 3A 20

00000030:            2A 2F 2A 0D 0A 43 6F 6F 6B 69 65 3A 20 44 36 43

00000040:            57 50 2B 56 5A 47 6D 59 6B 6D 64 6D 64 64 58 55

00000050:            71 58 4D 31 71 31 6A 41 3D 0D 0A 55 73 65 72 2D

During our analysis of the different PlugX samples discovered, the domain names as mentioned above stayed the same, though the payload values were different. For example:

  • hxxp://sery.brushupdata.com/B4BBDCC029E119719F065622
  • hxxp://sery.brushupdata.com/07FDB1B97D22EE6AF2482B1B
  • hxxp://sery.brushupdata.com/273CDC0B9C6218BC1187556D

Other PlugX samples we observed injected themselves into Windows Media Player and started a connection with the following two domains:

  • center.asmlbigip.com
  • sec.asmlbigip.com

Hello Winnti

Another mechanism observed was to start a program as a service [T1543.003] on the Operating System with the acquired System rights by using the *Potato tools. The file the adversary was using seemed to be a backdoor that was using the DLL file format (2458562ca2f6fabddae8385cb817c172).

The DLL is used to create a malicious service and its name is service.dll”. The name of the created service, “SysmainUpdate”, is usurping the name of the legitimate service “SysMain” which is related to the legitimate DLL sysmain.dll and also to the Superfetch service. The dll is run using the command “rundll32.exe SuperFrtch.dll, #1”. The export function has the name “WwanSvcMain”.

The model uses the persistence technique utilizing svchost.exe with service.dll to install a rogue service. It appears that the dll employs several mechanisms to fingerprint the targeted system and avoid analysis in the sandbox, making analysis more difficult. The DLL embeds several obfuscated strings decoded when running. Once the fingerprinting has been done, the malware will install the malicious service using the API RegisterServiceHandlerA then SetServiceStatus, and finally CreateEventA. A description of the technique can be found here.

The malware also decrypts and injects the payload in memory. The following screenshot shows the decryption routine.

Figure 4 Decryption routine

When we analyzed this unique routine, we discovered similarities and the mention of it in a publication that can be read here. The malware described in the article is attributed to the Winnti malware family. The operating method and the code used in the DLL described in the article are very similar to our analysis and observations.

The process dump also revealed further indicators. Firstly, it revealed artifacts related to the DLL analyzed, “C:\ProgramData\Microsoft\Windows\SuperfRtch\SuperfRtch.dat”. We believe that this dat file might be the loaded payload.

Secondly, while investigating the process dump, we observed activities from the backdoor that are part of the data exfiltration attempts which we will describe in more detail in this analysis report.

A redacted snippet of the code would look like this:

Creating archive ***.rar

Adding   [data from location]

  0%

  OK

Another indicator of discovering Winnti malware was the following execution path we discovered in the command line dump of the memory:

cmd /c klcsngtgui.exe 1560413F7E <abbreviation-victim>.dat

What we observed here was the use of a valid executable, the AES 256 decryption key of the payload (.dat file). In this case, the payload file was named using an abbreviation of the victim company’s name. Unfortunately, the adversary had removed the payload file from the system. File carving did not work since the disk/unallocated space was overwritten. However, reconstructing traces from memory revealed that we were dealing with the Winnti 4.0 malware. The malware was injected into a SVCHOST process where a driver location pointed to the config file. We observed in the process dump the exfiltration of data on the system, such as OS, Processor (architecture), Domain, Username, etc.

Another clue that helped us was the use of DNS tunneling by Winnti which we discovered traces of in memory. The hardcoded 208.67.222.222 resolves to a legitimate OpenDNS DNS server. The IP is pushed into the list generated by the malware at runtime. At the start of the malware, it populates the list with the system’s DNS, and the OpenDNS server is only used as a backup to ensure that the C2 domain is resolved.

Another indicator in the process dump was the setup of the C2 connection including the User-Agent that has been observed being used by Winnti 4.0 malware:

Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.36

Other Persistence Activities

WMI activity [T1546.003] was also observed to execute commands on the systems.

From a persistence point of view, scheduled tasks [T1053.005] and the use of valid accounts [T1078] acquired through the use of Mimikatz, or creating LSASS dumps, were observed being employed during the length of the campaign.

Lateral Movement

From a lateral movement perspective, the adversary used the obtained credentials to hop from asset to asset. In one particular case, we observed a familiar filename: “PsExec.exe”. This SysInternals tool is often observed being used in lateral movement by adversaries, however, it can also be used by the sysadmins of the network. In our case, the PsExec executable had a file size of 9.6 MB where the original PsExec (depending on 32- or 64-bit version) had a maximum file size of 1.3 MB. An initial static inspection of the file resulted in a blob of code that was present in the executable which had a very high entropy score (7.99). When running the file from the command line, the following output was observed:

Figure 5 PsExec output

The error notification and the ‘Impacket’ keyword tipped us off and, after digging around, we found more. The fake PsExec is an open-source Python script that is a PsExec alternative with shell/backdoor capability. It uses a script from this location: hxxps://github.com/SecureAuthCorp/impacket/blob/master/examples/psexec.pyi. The file is large since it incorporates a low-level protocol interaction from Impacket. The Python library combined with the script code is compiled with py2exe. The file was compiled during the time of the latest attack activities and signed with an expired certificate.

Data Exfiltration

From what we observed, the adversary had a long-term intention to stay present in the victim’s network. With high confidence, we believe that the adversary was interested in stealing proprietary intelligence that could be used for military or intellectual property/manufacturing purposes.

The adversary used several techniques to exfiltrate the data. In some cases, batch (.bat) scripts were created to gather information from certain network shares/folders and use the ‘rar’ tool to compress them to a certain size [T1020] [T1030]. Example of content in a batch script:

C:\Windows\web\rar.exe a -[redacted] -r -v50000 [Target-directory]

On other occasions, manual variants of the above command were discovered after using the custom backdoor as described earlier.

When the data was gathered on a local system using the backdoor, the files were exfiltrated over the backdoor and the rar files were deleted [T1070.004]. Where external facing assets were used, like a web server, the data was stored in a location in the Internet Information Services (IIS) web server and exfiltrated over HTTP using GET requests towards the exact file paths [T1041] [T1567] [T1071].

An example of the [redacted] web traffic in the IIS logfiles:

Date /Time Request TCP Src port Source IP User-Agent
Redacted GET /****/[redacted].rar 80 180.50.*.* MINIXL
redacted GET /****/[redacted].rar 80 209.58.*.* MINIXL

The source IP addresses discovered belonged to two different ISP/VPN providers based in Hong-Kong.

The User-Agent value is an interesting one, “MINIXL”. When we researched that value, we discovered a blog from Dell SecureWorks from 2015 that mentions the same User-Agent, but also a lot of the artifacts mentioned from the blog overlapped with the observations and TTPs of Operation Harvest [link].

What we could retrieve from open-source databases is that the use of this particular User-Agent is very limited and seems to originate from the APAC region.

Who did it?

That seems to be the one-million-dollar question to be asked. Within McAfee, attribution is not our main focus, protecting our customers is our priority. What we do care about is that if we learn about these techniques during an investigation, can we map them out and support our IR team on the ground, or a customer’s IR team, with the knowledge that can help determine which phase of the attack the evidence is pointing to and based on historical data and intelligence, assist in blocking the next phase and discover more evidence?

We started by mapping out all MITRE ATT&CK Enterprise techniques and sub-techniques, added the tools used, and did a comparison against historical technique data from the industry. We ended up with four groups that shared techniques and sub-techniques. The Winnti group was added by us since we discovered the unique encryption function in the custom backdoor and indicators of the use of the Winnti malware.

Figure 6 ATT&CK technique comparison

The diagram reflecting our outcome insinuated that APT27 and APT41 are the most likely candidates that overlap with the (sub-)techniques we observed.

Since all these groups are in a certain time zone, we extracted all timestamps from the forensic investigation with regards to:

  • Registration of domain
  • Compile timestamps of malware (considering deception)
  • Timestamps of command-line activity
  • Timestamps of data exfiltration
  • Timestamps of malware interaction such as creation, deletion, etc.

When we converted all these timestamps from UTC to the aforementioned groups’ time zones, we ended up with the below scheme on activity:

Figure 7 Adversary’s time of operation

In this campaign, we observed how the adversary mostly seems to work from Monday to Thursday and typically during office hours, albeit with the occasional exception.

Correlating ATT&CK (sub-)techniques, timestamps, and tools like PlugX and Mimikatz are not the only evidence indicators that can help to identify a possible adversary. Command-line syntax, specific code similarity, actor capability over time versus other groups, and unique identifiers are at the top of the ‘pyramid of pain’ in threat intelligence. The bottom part of the pyramid is about hashes, URLs, and domains, areas that are very volatile and easy to change by an adversary.

Figure 8 Pyramid of Pain

Beyond investigating those artifacts, we also took possible geopolitical interests and potential deception into consideration when building our hypothesis. When we mapped out all of these, we believed that one of the two previously mentioned groups were responsible for the campaign we investigated.

Our focus was not about attribution though, but more around where the flow of the attack is, matches against previous attack flows from groups, and what techniques/tools they are using to block next steps, or where to locate them. The more details we can gather at the top of ‘the pyramid of pain’, the better we can determine the likely adversary and its TTP’s.

That’s all Folks!

Well, not really. While correlating the observed (sub-)techniques, the malware families and code, we discovered another targeted attack against a similar target in the same nation with the major motivation of gathering intelligence. In the following diagram we conducted a high-level comparison of the tools being used by the adversary:

Figure 9 Tools comparison

Although some of the tools are unique to each campaign, if taken into consideration over time with when they were used, it makes sense. It demonstrates the development of the actor and use of newer tools to conduct lateral movement and to obtain the required level of user rights on systems.

Overall, we observed the same modus operandi. Once an initial foothold was established, the adversary would deploy PlugX initially to create a few backdoors in the victim’s network in case they were discovered early on. After that, using Mimikatz and dumping lsass, they were looking to get valid accounts. Once valid accounts were acquired, several tools including some of their own tools were used to gain information about the victim’s network. From there, several shares/servers were accessed, and information gathered. That information was exfiltrated as rar files and placed on an internet-facing server to hide in the ‘normal’ traffic. We represent that in the following graphic:

Figure 10 Attack flow

In the 2019/2020 case we also observed the use of a malware sample that we would classify as part of the Winnti malware family. We discovered a couple of files that were executed by the following command:

Start Ins64.exe E370AA8DA0 Jumper64.dat

The Winnti loader ‘Ins64.exe’ uses the value ‘E370AA8DA0’ to decrypt the payload from the .dat file using the AES-256-CTR decryption algorithm and starts to execute.

After executing this command and analyzing the memory, we observed a process injection in one of the svchost processes whereby one particular file was loaded from the following path:

C:\programdata\microsoft\windows\caches\ieupdate.dll

Figure 11 Memory capture

The malware started to open up both UDP and TCP ports to connect with a C2 server.

UDP Port 20502

TCP Port  20501

Figure 12 Network connections to C2

Capturing the traffic from the malware we observed the following as an example:

Figure 13 Winnti HTTP traffic to C2

The packet data was customized and sent through a POST request with several headers towards the C2. In the above screenshot the numbers after “POST /” were randomly generated.

The User-Agent is a good network indicator to identify the Winnti malware since it is used in multiple variants:

Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.94 Safari/537.36

Indeed, the same User Agent value was discovered in the Winnti sample in Operation Harvest and seems to be typical for this malware family.

The cookie value consists of four Dword hex values that contain information about the customized packet size using a XOR value.

We learned more about the packet structure of Winnti from this link.

Applying what we learned about the handshake, we observed the following in our traffic sample:

Dword value 0 = 52 54 00 36

Dword value 1 = 3e ff 06 b2

Dword value 2 = 99 6d 78 fe

Dword value 3 = 08 00 45 00

Dword value 4 = 00 34 00 47

Initial handshake order:

Based on our cross-correlation with samples and other OSINT resources, we believe with a high confidence that this was a Winnti 4.0 sample that connects with a confirmed Winnti C2 server.

The identified C2 server was 185.161.211.97 TCP/80.

Timeline of Events

When analyzing the timestamps from this investigation, like we did for operation Harvest, we came to the below overview:

Figure 14 Beijing working hours case 2019/2020

Again, we observed that the adversary was operating Monday to Friday during office hours in the Beijing time-zone.

Conclusion

Operation Harvest has been a long-term operation whereby an adversary maintained access for multiple years to exfiltrate data. The exfiltrated data would have either been part of an intellectual property theft for economic purposes and/or would have provided insights that would be beneficial in case of military interventions. The adversaries made use of techniques very often observed in this kind of attack but also used distinctive new backdoors or variants of existing malware families. Combining all forensic artifacts and cross-correlation with historical and geopolitical data, we have high confidence that this operation was executed by an experienced APT actor.

After mapping out all data, TTP’s etc., we discovered a very strong overlap with a campaign observed in 2019/2020. A lot of the (in-depth) technical indicators and techniques match. Also putting it into perspective, and over time, it demonstrates the adversary is adapting skills and evolving the tools and techniques being used.

On a separate note, we observed the use of the Winnti malware. We deliberately mention the term ‘malware’ instead of group. The Winnti malware is known to be used by several actors. Within every nation-state cyber-offensive activity, there will be a department/unit responsible for the creation of the tools/malware, etc. We strongly believe that is exactly what we observe here as well. PlugX, Winnti and some other custom tools all point to a group that had access to the same tools. Whether we put name ‘X’ or ‘Y’ on the adversary, we strongly believe that we are dealing with a Chinese actor whose long-term objectives are persistence in their victims’ networks and the acquisition of the intelligence needed to make political/strategic or manufacturing decisions.

 

MITRE ATT&CK Techniques

Technique ID Technique Title Context Campaign
T1190 Exploit Public-facing application Adversary exploited a web-facing server with application
T1105 Ingress Tool transfer Tools were transferred to a compromised web-facing server
T1083 File & Directory Discovery Adversary browsed several locations to search for the data they were after.
T1570 Lateral Tool Transfer Adversary transferred tools/backdoors to maintain persistence
T1569.002 System Services: Service Execution Adversary installed custom backdoor as a service
T1068 The exploitation of Privilege Escalation Adversary used Rotten/Bad Potato to elevate user rights by abusing API calls in the Operating System.
T1574.002 Hijack Execution Flow: DLL Side-Loading Adversary used PlugX malware that is famous for DLL-Side-Loading using a valid executable, a DLL with the hook towards a payload file.
T1543.003 Create or Modify System Process: Windows Service Adversary launched backdoor and some tools as a Windows Service including adding of registry keys
T1546.003 Event-Triggered Execution: WMI Event Subscription WMI was used for running commands on remote systems
T1053.005 Scheduled task Adversary ran scheduled tasks for persistence of certain malware samples
T1078 Valid accounts Using Mimikatz and dumping of lsass, the adversary gained credentials in the network
T1020 Automated exfiltration The PlugX malware exfiltrated data towards a C2 and received commands to gather more information about the victim’s compromised host.
T1030 Data transfer size limits Adversary limited the size of rar files for exfiltration
T1070.004 Indicator removal on host Where in the beginning of the campaign the adversary was sloppy, during the last months of activity they became more careful and started to remove evidence
T1041 Exfiltration over C2 channel Adversary used several C2 domains to interact with compromised hosts.
T1567 Exfiltration over Web Service Gathered information was stored as ‘rar’ files on the internet-facing server, whereafter they were downloaded by a specific ip range.
T1071.004 Application layer protocol: DNS Using DNS tunneling for the C2 traffic of the PlugX malware

 

Indicators of Compromise (IOCs)

Note: the indicators shared are to be used in a historical and timeline-based context, ranging from 2016 to March 2021.

Operation Harvest:

PlugX C2:

sery(.)brushupdata(.)com
Dnssery(.)brushupdata(.)com
Center(.)asmlbigip(.)com

 

Tools:

Mimikatz

PsExec

RottenPotato

BadPotato

 

Operation 2019/2020

PlugX malware:

f50de0fae860a5fd780d953a8af07450661458646293bfd0fed81a1ff9eb4498

26e448fe1105b5dadae9b7607e3cca366c6ba8eccf5b6efe67b87c312651db01

e9033a5db456af922a82e1d44afc3e8e4a5732efde3e9461c1d8f7629aa55caf

3124fcb79da0bdf9d0d1995e37b06f7929d83c1c4b60e38c104743be71170efe

 

Winnti:

800238bc27ca94279c7562f1f70241ef3a37937c15d051894472e97852ebe9f4

c3c8f6befa32edd09de3018a7be7f0b7144702cb7c626f9d8d8d9a77e201d104

df951bf75770b0f597f0296a644d96fbe9a3a8c556f4d2a2479a7bad39e7ad5f

 

Winnti C2: 185.161.211.97

 

Tools:

PSW64                  6e983477f72c8575f8f3ff5731b74e20877b3971fa2d47683aff11cfd71b48c6

NTDSDumpEx  6db8336794a351888636cb26ebefb52aeaa4b7f90dbb3e6440c2a28e4f13ef96

NBTSCAN             c9d5dc956841e000bfd8762e2f0b48b66c79b79500e894b4efa7fb9ba17e4e9e

NetSess                ddeeedc8ab9ab3b90c2e36340d4674fda3b458c0afd7514735b2857f26b14c6d

Smbexec              e781ce2d795c5dd6b0a5b849a414f5bd05bb99785f2ebf36edb70399205817ee

Wmiexec              14f0c4ce32821a7d25ea5e016ea26067d6615e3336c3baa854ea37a290a462a8

Mimikatz

RAR command-line

TCPdump

The post Operation ‘Harvest’: A Deep Dive into a Long-term Campaign appeared first on McAfee Blog.

Executive Spotlight: Q&A with SVP of Global Channels, Kathleen Curry

By Melissa Gaffney

For this week’s executive spotlight, I’m highlighting Kathleen Curry, senior vice president, Global Enterprise Channels at McAfee Enterprise. Curry was named one of CRN’s 2021 Channel Chiefs. Joining the company in April 2020, she was acknowledged for her contributions expanding our partner program initiatives to reward partners for servicing customers in line with their modern needs and consumption preferences. This includes spearheading McAfee Enterprises’ “channel first” initiative and ethos, aimed to better empower our channel partner community and increase their profitability, while at the same time optimizing the end customer experience by scaling through McAfee Enterprise’s channels and partners. Read below for more.

Q: Who has been the most influential person in your life?

My father instilled in me, from as far back as I can remember, that I can do whatever I set my mind to and that I am the owner of my life story. This helped create a positive, empowered mindset when facing challenges and opportunities throughout my life. And my father always kept our world big. Whether it was traveling to see other cultures, sharing his never-ending love of history, or getting involved in our community, his actions showed me the importance of taking time to connect with others, understand the context of things, and have compassion. While he is no longer with us, I still feel like I get advice from him every day.

Q: What are the most significant problems influencing cybersecurity professionals today?

The ever-changing threat landscape is a real challenge. Finding the time to keep up on trends, proactively secure an environment, and address unexpected issues has become increasingly difficult. Together with our partners, we can help solve these problems.

Q: How do you separate hype from genuine innovation?

Execution. True innovation delivers real outcomes. It can be big or small, but mostly, it must be realized and validated.

Q: With cybersecurity and AI capabilities expanding at a rapid pace, what will the future look like for companies like McAfee Enterprise and our partners in the coming years?

There is tremendous opportunity ahead for us and our partners. With the complexity of the cybersecurity landscape, continuing threats, and talent gaps, our customers need our collective solutions, expertise, and services more than ever. We are charging ahead to optimize our channel program with partner profitability and growth at the forefront. Our dedication to a Channel First strategy coupled with best-in-class solutions positions us extremely well to win and best benefit the customers we serve together.

The post Executive Spotlight: Q&A with SVP of Global Channels, Kathleen Curry appeared first on McAfee Blog.

Industry Insights: RDAP Becomes Internet Standard

By Scott Hollenbeck
Technical header image of code

This article originally appeared in The Domain Name Industry Brief (Volume 18, Issue 3)

Earlier this year, the Internet Engineering Task Force’s (IETF’s) Internet Engineering Steering Group (IESG) announced that several Proposed Standards related to the Registration Data Access Protocol (RDAP), including three that I co-authored, were being promoted to the prestigious designation of Internet Standard. Initially accepted as proposed standards six years ago, RFC 7480, RFC 7481, RFC 9082 and RFC 9083 now comprise the new Standard 95. RDAP allows users to access domain registration data and could one day replace its predecessor the WHOIS protocol. RDAP is designed to address some widely recognized deficiencies in the WHOIS protocol and can help improve the registration data chain of custody.

In the discussion that follows, I’ll look back at the registry data model, given the evolution from WHOIS to the RDAP protocol, and examine how the RDAP protocol can help improve upon the more traditional, WHOIS-based registry models.

Registration Data Directory Services Evolution, Part 1: The WHOIS Protocol

In 1998, Network Solutions was responsible for providing both consumer-facing registrar and back-end registry functions for the legacy .com, .net and .org generic top-level domains (gTLDs). Network Solutions collected information from domain name registrants, used that information to process domain name registration requests, and published both collected data and data derived from processing registration requests (such as expiration dates and status values) in a public-facing directory service known as WHOIS.

From Network Solution’s perspective as the registry, the chain of custody for domain name registration data involved only two parties: the registrant (or their agent) and Network Solutions. With the introduction of a Shared Registration System (SRS) in 1999, multiple registrars began to compete for domain name registration business by using the registry services operated by Network Solutions. The introduction of additional registrars and the separation of registry and registrar functions added parties to the chain of custody of domain name registration data. Information flowed from the registrant, to the registrar, and then to the registry, typically crossing multiple networks and jurisdictions, as depicted in Figure 1.

Flowchart of registration process. Information flowed from the registrant, to the registrar, and then to the registry.
Figure 1. Flow of information in early data registration process.

Registration Data Directory Services Evolution, Part 2: The RDAP Protocol

Over time, new gTLDs and new registries came into existence, new WHOIS services (with different output formats) were launched, and countries adopted new laws and regulations focused on protecting the personal information associated with domain name registration data. As time progressed, it became clear that WHOIS lacked several needed features, such as:

  • Standardized command structures
  • Output and error structures
  • Support for internationalization and localization
  • User identification
  • Authentication and access control

The IETF made multiple attempts to add features to WHOIS to address some of these issues, but none of them were widely adopted. A possible replacement protocol known as the Internet Registry Information Service (IRIS) was standardized in 2005, but it was not widely adopted. Something else was needed, and the IETF went back to work to produce what became known as RDAP.

RDAP was specified in a series of five IETF Proposed Standard RFC documents, including the following, all of which were published in March 2015:

  • RFC 7480, HTTP Usage in the Registration Data Access Protocol (RDAP)
  • RFC 7481, Security Services for the Registration Data Access Protocol (RDAP)
  • RFC 7482, Registration Data Access Protocol (RDAP) Query Format
  • RFC 7483, JSON Responses for the Registration Data Access Protocol (RDAP)
  • RFC 7484, Finding the Authoritative Registration Data (RDAP) Service

Only when RDAP was standardized did we start to see broad deployment of a possible WHOIS successor by domain name registries, domain name registrars and address registries.

The broad deployment of RDAP led to RFCs 7480 and 7481 becoming Internet Standard RFCs (part of Internet Standard 95) without modification in March 2021. As operators of registration data directory services implemented and deployed RDAP, they found places in the other specifications where minor corrections and clarifications were needed without changing the protocol itself. RFC 7482 was updated to become Internet Standard RFC 9082, which was published in June 2021. RFC 7483 was updated to become Internet Standard RFC 9083, which was also published in June 2021. All were added to Standard 95. As of the writing of this article, RFC 7484 is in the process of being reviewed and updated for elevation to Internet Standard status.

RDAP Advantages

Operators of registration data directory services who implemented RDAP can take advantage of key features not available in the WHOIS protocol. I’ve highlighted some of these important features in the table below.

RDAP Feature Benefit
Standard, well-understood, and widely available HTTP transport Relatively easy to implement, deploy and operate using common web service tools, infrastructure and applications.
Securable via HTTPS Helps provide confidentiality for RDAP queries and responses, reducing the amount of information that is disclosed to monitors.
Structured output in JavaScript Object Notation (JSON) JSON is well-understood and tool friendly, which makes it easier for clients to parse and format responses from all servers without the need for software that’s customized for different service providers.
Easily extensible Designed to support the addition of new features without breaking existing implementations. This makes it easier to address future function needs with less risk of implementation incompatibility.
Internationalized output, with full support for Unicode character sets Allows implementations to provide human-readable inputs and outputs that are represented in a language appropriate to the local operating environment.
Referral capability, leveraging HTTP constructs Provides information to software clients that allow the client to retrieve additional information from other RDAP servers. This can be used to hide complexity from human users.
Support of standardized authentication RDAP can take full advantage of all of the client identification, authentication and authorization methods that are available to web services. This means that RDAP can be used to provide the basic framework for differentiated access to registration data based on attributes associated with the user and the user’s query.

Verisign and RDAP

Verisign’s RDAP service, which was originally launched as an experimental implementation several years before gaining widespread adoption, allows users to look up records in the registry database for all registered .com, .net, .name, .cc and .tv domain names. It also supports Internationalized Domain Names (IDNs).

We at Verisign were pleased not only to see the IETF recognize the importance of RDAP by elevating it to an Internet Standard, but also that the protocol became a requirement for ICANN-accredited registrars and registries as of August 2019. Widespread implementation of the RDAP protocol makes registration data more secure, stable and resilient, and we are hopeful that the community will evolve the prescribed implementation of RDAP such that the full power of this rich protocol will be deployed.

You can learn more in the RDAP Help section of the Verisign website, and access helpful documents such as the RDAP technical implementation guide and the RDAP response profile.

The post Industry Insights: RDAP Becomes Internet Standard appeared first on Verisign Blog.

The Bug Report | September 2021: CVE-2021-40444

By Kevin McGrath
How to check for viruses

Why am I here?

There’s a lot of information out there on critical vulnerabilities; this short bug report contains an overview of what we believe to be the most news and noteworthy vulnerabilities. We don’t rely on a single scoring system like CVSS to determine what you need to know about; this is all about qualitative and experience-based analysis, relying on over 100 years of combined industry experience within our team. We look at characteristics such as wormability, ubiquity of the target, likelihood of exploitation and impact. Today, we’ll be focusing on CVE-2021-40444.

CrossView: CVE-2021-40444

What is it?

CVE-2021-40444 is a vulnerability in Office applications which use protected view such as Word, PowerPoint and Excel which allows an attacker to achieve remote code execution (RCE). CVE-2021-40444 is a vulnerability which allows a carefully crafted ActiveX control and a malicious MS Cabinet (.cab) file to be launched from an Office document

Most importantly, this vulnerability impacts the applications themselves, as well as the Windows Explorer preview pane.

Who cares?

This is a great question! Pretty much anyone who uses any Microsoft Office applications, or has them installed, should be concerned.

Office is one of the most widely-used applications on the planet. Odds are good you have it open right now. While many companies have disabled macros within Office documents at the Group Policy level, it is unlikely ActiveX is treated similarly. This means that without proper data hygiene, a large proportion of Office users will be vulnerable to this exploit.

Fortunately, “spray and pray” style email campaigns are unlikely to gain traction with this exploit, as mail providers have started flagging malicious files (or at least known PoCs) as potential malware and removing them as attachments.

What can I do?

Good news! You aren’t necessarily completely helpless. By default, Windows uses a flag known as the “Mark of the Web” (MoTW) to enable Protected Mode in Office. Email attachments, web downloads, and similar all have this MoTW flag set, and Protected Mode prevents network operations, ActiveX controls, and macros embedded within a document from being executed, which effectively disables exploitation attempts for this vulnerability.

That said, users have become so inured to the Protected View message, they often dismiss it without considering the consequences. Much like “confirmation fatigue” can lead to installing malicious software, attackers can leverage this common human response to compromise the target machine.

Even more so, while exploitation can occur via the Office applications themselves and via the Explorer preview pane, the Outlook preview pane operates in a completely different manner which does not trigger the exploit. Exactly why this distinction exists only MS can explain, but the upshot is that Outlook users have to explicitly open malicious files to be exploited – the more hoops users have to jump through to open a malicious, the less likely they are to be pwned.

If I’m protected by default, why does this matter?

It depends entirely on how the file gets delivered and where the user saves it.

There are many ways of getting files beyond email and web downloads – flash cards for cameras, thumb drives, external hard drives, etc. Files opened from these sources (and many common applications[1]) don’t have MoTW flag set, meaning that attackers could bypass the protection entirely by sending a malicious file in a .7z archive, or as part of a disk image, or dropping a USB flash drive in your driveway. Convincing users to open such files is no harder than any other social engineering strategy, after all.

Another fun workaround for bypassing default protections is to make use of an RTF file – emailed, downloaded, or otherwise. From our testing, an RTF file saved from an email attachment does not bear the MoTW but can still be used as a vector of exploitation. Whether RTF files become the preferred option for this exploit remains to be seen.

TL;DR

Ha! We put the tl;dr near the end, which only makes sense when the information above is so important it’s worth reading. But if all you care about is what you can actively do to ensure you’re not vulnerable, this section is for you.

Mitigations:

  • Apply the Patch! Available via Windows Update as of 9/14/2021, this is your best solution.
  • Enable registry workaround to disable ActiveX – details can be found on Microsoft’s bulletin page and should effectively disable exploitation attempts until a formal patch can be applied.
  • Confirm that Windows Explorer “Preview” pane is disabled (this is true by default). This only protects against the Preview pane exploitation in Explorer. Opening the file outside of Protected Mode (such as an RTF file) or explicitly disabling Protected Mode will still allow for exploitation.

The Gold Standard

In case you simply can’t apply the patch or have a “production patch cycle” or whatever, McAfee Enterprise has you covered. Per our KB we provide comprehensive coverage for this attack across our protection and detection technology stack of endpoint (ENS Expert Rules), network (NSP) and EDR.

https://kc.mcafee.com/corporate/index?page=content&id=KB94876

[1] 7zip, files from disk images or other container formats, FAT formatted volumes, etc.

The post The Bug Report | September 2021: CVE-2021-40444 appeared first on McAfee Blog.

McAfee Enterprise Defender Blog | MSHTML CVE-2021-40444

By Taylor Mullins

Threat Summary

Microsoft is warning its users of a zero-day vulnerability in Windows 10 and versions of Windows Server that is being leveraged by remote, unauthenticated attackers to execute code on the target system using specifically crafted office documents. Tracked as CVE-2021-40444 (CVSS score: 8.8), the remote code execution flaw is rooted in MSHTML (aka Trident), a proprietary browser engine for the now-discontinued Internet Explorer and which is used in Microsoft Office to render web content inside Word, Excel, and PowerPoint documents. This vulnerability is being actively exploited and protections should be put into place to prevent that. Microsoft has released guidance on a workaround, as well as updates to prevent exploitation, but below are additional McAfee Enterprise countermeasures you can use to protect your business.

MVISION Insights Campaign – “CVE-2021-40444 – Microsoft MSHTML Remote Code Execution Vulnerability”

Since originally reported, vulnerability exploitation has grown worldwide.

Figure 1. Latest MITRE ATT&CK framework for Exploitation of CVE-2021-40444. Source: MVISION Insights

Additional MITRE ATT&CK techniques have been identified since our original report. MVISION Insights will be regularly updated with the latest IOCs and hunting rules for proactive detection in your environment.

Figure 2. Latest MITRE ATT&CK framework for Exploitation of CVE-2021-40444. Source: MVISION Insights

McAfee Enterprise Product Protections

The following McAfee Enterprise products can protect you against this threat.

Figure 3. Protection by ENS Module

For ENS, it’s important to have both Threat Protection (TP) and Adaptive Threat Protection (ATP) with GTI enabled. We are seeing 50% of detections based on ATP behavior analysis rules.

Figure 4. Protection by ENS Module

More details on Endpoint protection including MVISION EDR are included below.

Preventing Exploit with McAfee ENS

McAfee Global Threat Intelligence (GTI) is currently detecting the analyzed IOCs for this exploitation. GTI will be continually updated as new indicators are observed in the wild.

ENS Threat Prevention module can provide added protections against exploitation of CVE-2021-40444 until a patch is deployed. The following signature in Exploit Prevention has shown coverage in testing of observed exploits; this signature could cause false positives, so it is highly advised to test in Report Mode or in sandbox environments before blocking in production environments.

Signature 2844: Microsoft Word WordPerfect5 Converter Module Buffer Overflow Vulnerability

Several custom Expert Rules can be implemented to prevent or detect potential exploitation attempts. As with all Expert Rules, please test them in your environment before deploying widely to all endpoints. Recommended to implement this rule in a log only mode to start.

Figure 5. Expert Rule to block or log exploitation attempts

Figure 6. Expert Rule to block or log exploitation attempts

ATP Rules

Adaptive Threat Protection module provides behavior-blocking capability through threat intelligence, rules destined to detect abnormal application activity or system changes and cloud-based machine-learning. To exploit this vulnerability, the attacker must gain access to a vulnerable system, most likely through Spearphishing with malicious attachments. These rules may also be effective in preventing initial access and execution. It is recommended to have the following rules in Observe mode at least and monitor for threat events in ePO.

  • Rule 2: Use Enterprise Reputations to identify malicious files.
  • Rule 4: Use GTI file reputation to identify trusted or malicious files
  • Rule 5: Use GTI file reputation to identify trusted or malicious URLs
  • Rule 300: Prevent office applications from being abused to deliver malicious payloads
  • Rule 309: Prevent office applications from being abused to deliver malicious payloads
  • Rule 312: Prevent email applications from spawning potentially malicious tools

As with all ATP Rules, please test them in your environment before deploying widely to all endpoints or turning on blocking mode.

Utilizing MVISION EDR for Hunting of Threat Activity

The Real-Time Search feature in MVISION EDR provides the ability to search across your environment for behavior associated with the exploitation of this Microsoft vulnerability. Please see the queries to locate the “mshtml” loaded module associated with various application processes.

EDR Query One

Processes where Processes parentimagepath matches “winword|excel|powerpnt” and Processes cmdline matches “AppData\/Local\/Temp\/|\.inf|\.dll” and Processes imagepath ends with “\control.exe”

EDR Query Two

HostInfo hostname and LoadedModules where LoadedModules process_name matches “winword|excel|powerpnt” and LoadedModules module_name contains “mshtml” and LoadedModules module_name contains “urlmon” and LoadedModules module_name contains “wininet

Additionally, the Historical Search feature within MVISION EDR will allow for the searching of IOCs even if a system is currently offline.

Figure 7. Using Historical Search to locate IOCs across all devices. Source: MVISION EDR

McAfee Enterprise has published the following KB article that will be updated as more information and coverage is released.

McAfee Enterprise coverage for CVE-2021-40444 – MSHTML Remote Code Execution

Further Protection for Threat Actor Behavior After Exploitation

Since public disclosure of the vulnerability, it has been observed from successful exploitation of CVE-2021-40444 in the wild that threat actors are utilizing a Cobalt Strike payload to then drop ransomware later in the compromised environment. The association between this vulnerability and ransomware point to the possibility that the exploit has been added to the tools utilized in the ransomware-as-a-service (RaaS) ecosystem.

Figure 8. CVE-2021-40444-attack-chain (Microsoft)​​

The Ransomware Gangs that have been observed in these attacks have in the past been known to utilize the Ryuk and Conti variants of ransomware.

Please see below additional mitigations that can be utilized in the event your environment is compromised and added protections are needed to prevent further TTPs.

Cobalt Strike BEACON

MVISION Insights Campaign – Threat Profile: CobaltStrike C2s

 

Endpoint Security – Advanced Threat Protection:

Rule 2: Use Enterprise Reputations to identify malicious files.

Rule 4: Use GTI file reputation to identify trusted or malicious files

Rule 517: Prevent actor process with unknown reputations from launching processes in common system folders

 

Ryuk Ransomware Protection

MVISION Insights Campaign – Threat Profile: Ryuk Ransomware

 

Endpoint Security – Advanced Threat Protection:

Rule 2: Use Enterprise Reputations to identify malicious files.

Rule 4: Use GTI file reputation to identify trusted or malicious files

Rule 5: Use GTI file reputation to identify trusted or malicious URLs

 

Endpoint Security – Access Protection:

Rule: 1

Executables (Include):

*

Subrules:

Subrule Type: Files

Operations:

Create

Targets (Include):

*.ryk

 

Endpoint Security – Exploit Prevention

Signature 6153: Malware Behavior: Ryuk Ransomware activity detected

 

Conti Ransomware Protection

MVISION Insights Campaign – Threat Profile: Conti Ransomware

 

Endpoint Security – Advanced Threat Protection:

Rule 2: Use Enterprise Reputations to identify malicious files.

Rule 4: Use GTI file reputation to identify trusted or malicious files

Rule 5: Use GTI file reputation to identify trusted or malicious URLs

 

Endpoint Security – Access Protection Custom Rules:

Rule: 1

Executables (Include):

*

Subrules:

Subrule Type: Files

Operations:

create

Targets (Include):

*conti_readme.txt

 

Endpoint Security – Exploit Prevention

Signature 344: New Startup Program Creation

The post McAfee Enterprise Defender Blog | MSHTML CVE-2021-40444 appeared first on McAfee Blog.

European Telecom Company Expands Its Footprint to Better Protect Users and Customers

By McAfee Enterprise

Hyper-growth and a determination to stand above the crowd compelled a popular Eastern European telecom to upgrade its trusty McAfee Enterprise security infrastructure, which they relied on for many years to protect their 8,000 corporate endpoints. Competitive pressure to keep costs low and cybercriminals at bay for both their internal users and their customers spurred the mobile and fixed telephony company to enhance their existing security architecture with the latest endpoint and cloud-based protections from McAfee Enterprise.

The integrated McAfee Enterprise approach—with ePolicy Orchestrator ( ePO™) at the helm as the single-pane-of-glass management hub—enabled the security architect to build out a strong security foundation, with McAfee Enterprise endpoint and data protection solutions and Microsoft Defender as the mainstays of the telecom’s line of defense.

With ransomware and other advanced threats grabbing headlines, the telecom company felt a pressing need to upgrade its McAfee Enterprise infrastructure and expand its on-premises endpoint protection to cloud-based McAfee Enterprise Endpoint Security. The organization also added MVISION™ Endpoint Threat Detection and Response (MVISION® EDR) and deployed two McAfee Enterprise Advanced Threat Defense appliances for dynamic and static sandboxing. These deployments were easily integrated into the telecom’s existing security architecture—with all solutions managed by McAfee Enterprise ePO software. 

Faster time to detection, investigation, and remediation

McAfee Enterprise Endpoint Security was instrumental in both simplifying and boosting endpoint protection, as multiple technologies—Threat Protection, Firewall, Web Control, and Adaptive Threat Prevention—are consolidated into a single agent. Leveraging threat data from local endpoints and McAfee Enterprise Global Threat Intelligence in the cloud, the telecom’s security team is also empowered to detect zero-day threats in near real time. When a threat is identified on a given endpoint, that information is automatically shared with all the other endpoints. And when an unknown or suspicious file is detected, it is immediately quarantined for analysis by MVISION EDR or the McAfee Endpoint Advanced Threat Defense sandbox.

Investigation had once been a lengthy and laborious manual process, often taking days or weeks. Sometimes detections of malicious activity were even ignored due to time constraints. But, after implementing MVISION EDR, things changed dramatically. Investigations and remediations now take as little as 10 to 15 minutes. The security team is catching more threats than ever before, their workflows are streamlined, and investigations are faster. Best of all, thanks to MVISION EDR, team members have expanded their threat-hunting capacity—without augmenting their staff.

Alerts coordinate with action

Because McAfee Enterprise Advanced Threat Defense appliances and MVISION EDR are integrated with McAfee Enterprise SIEM solutions and McAfee Enterprise ePO software, suspicious activity at an endpoint automatically triggers an investigation. Advanced analytics and artificial intelligence (AI) in MVISION enable administrators to understand the alert, sort out the facts, and remediate any threat. MVISION EDR does all the preparatory work, gathering and distilling relevant data, such as IP addresses and information about devices and users. Graphic visualizations and AI-guided investigations help analysts quickly get a grasp on what’s happening. The security team can also run real-time queries to see if something similar has occurred anywhere else, and they can conduct historical searches for greater context.

“The volume of malware we have to deal with has definitely shrunk since implementing McAfee Enterprise Endpoint Security. But the addition of MVISION EDR has made an even bigger impact on security posture. When our endpoints do encounter malware, we can now respond many times faster and more effectively than ever before,” points out the security architect.

Achieving a proactive stance

The enhanced McAfee Enterprise security architecture has transformed the telecom company’s approach to maintaining a more resilient security posture. The company is now taking a more proactive defense as a result of the new, fully coordinated McAfee Enterprise toolset.

In addition to advanced threat-hunting capabilities, the ability to share threat information across the organization via the Data Exchange Layer (DXL) has also contributed to a more proactive stance. For example, whenever a malicious file is identified, that information is automatically added to the McAfee Enterprise Threat Intelligence Exchange threat reputation database and shared with all DXL-connected systems: endpoints, SIEM, Advanced Threat Defense sandboxes, MVISION EDR software, and even the company’s Cisco pxGrid infrastructure, a multivendor, cross-platform network system that pulls together different parts of an IT infrastructure.

The European telecom company has plans to migrate to the cloud, beginning with Microsoft Office 365 and Microsoft Azure. For the time being, the organization plans to keep the McAfee Enterprise ePO management console on premises, but, in the very near future, the plan is to protect internet-only users with cloud-based MVISION ePO™.

“Taking measured steps to augment our security infrastructure has helped us succeed at keeping our company and customers secure,” say the security architect. “It’s nice to know that McAfee Enterprise can support us wherever we are in our journey and can extend our integrated security infrastructure from device to cloud when we’re ready.”

 

The post European Telecom Company Expands Its Footprint to Better Protect Users and Customers appeared first on McAfee Blog.

BlackMatter Ransomware Analysis; The Dark Side Returns

By Alexandre Mundo

BlackMatter is a new ransomware threat discovered at the end of July 2021.

This malware started with a strong group of attacks and some advertising from its developers that claims they take the best parts of other malware, such as GandCrab, LockBit and DarkSide, despite also saying they are a new group of developers. We at McAfee Enterprise Advanced Threat Research (ATR), have serious doubts about this last statement as analysis shows the malware has a great deal in common with DarkSide, the malware associated with the Colonial Pipeline attack which caught the attention of the US government and law enforcement agencies around the world.

The main goal of BlackMatter is to encrypt files in the infected computer and demand a ransom for decrypting them. As with previous ransomware, the operators steal files and private information from compromised servers and request an additional ransom to not publish on the internet.

COVERAGE AND PROTECTION ADVICE

McAfee’s EPP solution covers BlackMatter ransomware with an array of prevention and detection techniques.

ENS ATP provides behavioral content focusing on proactively detecting the threat while also delivering known IoCs for both online and offline detections. For DAT based detections, the family will be reported as Ransom-BlackMatter!<hash>. ENS ATP adds 2 additional layers of protection thanks to JTI rules that provide attack surface reduction for generic ransomware behaviors and RealProtect (static and dynamic) with ML models targeting ransomware threats.

Updates on indicators are pushed through GTI, and customers of Insights will find a threat-profile on this ransomware family that is updated when new and relevant information becomes available.

TECHNICAL DETAILS

BlackMatter is typically seen as an EXE program and, in special cases, as a DLL (Dynamic Library) for Windows. Linux machines can be affected with special versions of it too but in this report, we will only be covering the Windows version.

This report will focus on version 1.2 of BlackMatter while also noting the important changes in the current version, 2.0.

BlackMatter is programmed in C++ and has a size of 67Kb.

FIGURE 1. Information about the malware

The compile date of this sample is the 23rd of July 2021. While these dates can be altered, we think it is correct; version 1.9 has a compile time of 12 August 2021 and the latest version, 2.0, has a date four days later, on the 16th of August 2021. Is clear that the malware developers are actively improving the code and making detection and analysis harder.

The first action performed by BlackMatter is preparation of some modules that will be needed later to get the required functions of Windows.

FIGURE 2. BlackMatter searching for functions

BlackMatter uses some tricks to try and make analysis harder and avoid debuggers. Instead of searching for module names it will check for hashes precalculated with a ROT13 algorithm. The modules needed are “kernel32.dll” and “ntdll.dll”. Both modules will try to get functions to reserve memory in the process heap. The APIs are searched using a combination of the PEB (Process Environment Block) of the module and the EAT (Export Table Address) and enumerating all function names. With these names it will calculate the custom hash and check against the target hashes.

FIGURE 3. BlackMatter detecting a debugger

At this point BlackMatter will make a special code to detect debuggers, checking the last 2 “DWORDS” after the memory is reserved, searching for the bytes “0xABABABAB”. These bytes always exist when a process reserves memory in the heap and, if the heap has one special flag (that by default is set when a process is in a debugger), the malware will avoid saving the pointer to the memory reserved so, in this case, the variables will keep a null pointer.

In Windows operating systems the memory has different conditions based on whether a program is running in normal mode (as usual) or in debugging mode (a mode used by programmers, for example). In this case, when the memory is reserved to keep information, if it is in debugging mode, Windows will mark the end of this memory with a special value, “0xABABABAB”. BlackMatter checks for this value and, if found, the debugger is detected. To avoid having it run normally it will destroy the function address that it gets before, meaning it will crash, thus avoiding the execution.

FIGURE 4. Preparing the protection stub function

After this check it will create a special stub in the reserved memory which is very simple but effective in making analysis harder as the stub will need to be executed to see which function is called and executed.

This procedure will be done with all functions that will be needed; the hashes are saved hardcoded in the middle of the “.text” section in little structs as data. The end of each struct will be recognized by a check against the “0xCCCCCCCC” value.

FIGURE 5. Hashes of the functions needed

This behavior highlights that the BlackMatter developers know some tricks to make analysis harder, though it is simple to defeat both by patching the binary.

After this, the ransomware will use another trick to avoid the use of debuggers. BlackMatter will call the function “ZwSetInformationThread” with the class argument of 0x11 which will hide the calling thread from the debuggers.

If the malware executes it correctly and a debugger is attached, the debugging session will finish immediately. This code is executed later in the threads that will be used to encrypt files.

FIGURE 6. Another way to detect a debugger

The next action is to check if the user that launched the process belongs to the local group of Administrators in the machine using the function “SHTestTokenMembership”. In the case that the user belongs to the administrator group the code will continue normally but in other cases it will get the operating system version using the PEB (to avoid using API functions that can alter the version) and, if it is available, will open the process and check the token to see if that belongs to the Administrators group.

FIGURE 7. BlackMatter checking if it has administrator rights

In the case that the user does not belong to the Administrator group the process token will use a clever trick to escalate privileges.

The first action is to prepare the string “dllhost.exe” and enumerate all modules loaded. For each module it will check one field in the initial structure that all executables have that keeps the base memory address where it will be loaded (for example, kernel32.dll in 0x7fff0000) and will compare with its own base address. If it is equal, it will change its name in the PEB fields and the path and arguments path to “dllhost.exe” (in the case of the path and argument path to the SYSTEM32 folder, where the legitimate “dllhost.exe” exists). This trick is used to try and mislead the user. For each module found it will check the base address of the module with its own base address and, at that moment, will change the name of the module loaded, the path, and arguments to mislead the user.

FIGURE 8. Decryption of the string “dllhost.exe”

The process name will be “dllhost.exe” and the path will be the system directory of the victim machine. This trick, besides not changing the name of the process in the TaskManager, can make a debugger “think” that another binary is loaded and remove all breakpoints (depending on the debugger used).

FIGURE 9. Changing the name and path in the PEB

The second action is to use one exploit using COM (Component Object Model) objects to try to elevate privileges before finishing its own instance using the “Terminate Process” function.

For detection, the module uses an undocumented function from NTDLL.DLL, “LoadedModulesLdrCallback” that lets the programmer set a function as a callback where it can get the arguments and check the PEB. In this callback the malware will set the new Unicode strings using “RtlInitUnicodeString”; the strings are the path to “dllhost.exe” in the system folder and “dllhost.exe” as the image name.

The exploit used to bypass the UAC (User Access Control), which is public, uses the COM interface of CMSTPLUA and the COM Elevation Moniker.

In the case that it has administrator rights or uses the exploit with success, it will continue making the new extension that will be used with the encrypted files. For this task it will read the registry key of “Machine Guid” in the cryptographic key (HKEY LOCAL MACHINE).

This entry and value exist in all versions of Windows and is unique for the machine; with this value it will make a custom hash and get the final string of nine characters.

FIGURE 10. Creating the new extension for the encrypted files

Next, the malware will create the ransom note name and calculate the integrity hash of it. The ransom note text is stored encrypted in the malware data. Usually the ransom note name is “%s.README.txt”, where the wildcard is filled with the new extension generated previously.

The next step is to get privileges that will be needed later; BlackMatter tries to get many privileges:

·         SE_BACKUP_PRIVILEGE

·         SE_DEBUG_PRIVILEGE, SE_IMPERSONATE_PRIVILEGE

·         SE_INC_BASE_PRIORITY_PRIVILEGE

·         SE_INCREASE_QUOTA_PRIVILEGE

·         SE_INC_WORKING_SET_PRIVILEGE

·         SE_MANAGE_VOLUME_PRIVILEGE

·         SE_PROF_SINGLE_PROCESS_PRIVILEGE

·         SE_RESTORE_PRIVILEGE

·         SE_SECURITY_PRIVILEGE

·         SE_SYSTEM_PROFILE_PRIVILEGE

·         SE_TAKE_OWNERSHIP_PRIVILEGE

·         SE_SHUTDOWN_PRIVILEGE

 

FIGURE 11. Setting special privileges

After getting the privileges it will check if it has SYSTEM privileges, checking the token of its own process. If it is SYSTEM, it will get the appropriate user for logon with the function “WTSQueryUserToken”. This function only can be used if the caller has “SeTcbPrivilege” that, by default, only SYSTEM has.

FIGURE 12. Obtaining the token of the logged on user

After getting the token of the logged on user the malware will open the Windows station and desktop.

In the case that it does not have SYSTEM permissions it will enumerate all processes in the system and try to duplicate the token from “explorer.exe” (the name is checked using a hardcoded hash), if it has rights it will continue normally, otherwise it will check again if the token that was duplicated has administrator rights.

In this case it will continue normally but in other cases it will check the operating system version and the CPU (Central Processing Unit) mode (32- or 64- bits). This check is done using the function “ZwQueryInformationProcess” with the class 0x1A (ProcessWow64Information).

FIGURE 13. Checking if the operating system is 32- or 64-bits

In the case that the system is 32-bits it will decrypt one little shellcode that will inject in one process that will enumerate using the typical “CreateRemoteThread” function. This shellcode will be used to get the token of the process and elevate privileges.

In the case that the system is 64-bits it will decrypt two different shellcodes and will execute the first one that gets the second shellcode as an argument.

FIGURE 14. BlackMatter preparing shellcodes to steal system token

These shellcodes will allow BlackMatter to elevate privileges in a clean way.

Is important to understand that to get the SYSTEM token BlackMatter will enumerate the processes and get “svchost.exe”, but not only will it check the name of the process, it will also check that the process has the privilege “SeTcbPrivilege”. As only SYSTEM has it by default (and it is one permission that cannot be removed from this “user”) it will be that this process is running under SYSTEM and so it becomes the perfect target to attack with the shellcodes and steal the token that will be duplicated and set for BlackMatter.

FIGURE 15. Checking if the target process is SYSTEM

After this it will decrypt the configuration that it has embedded in one section. BlackMatter has this configuration encrypted and encoded in base64.

This configuration has a remarkably similar structure to Darkside, offering another clear hint that the developers are one and the same, despite their claims to the contrary.

After decryption, the configuration can get this information:

  • RSA Key used to protect the Salsa20 keys used to encrypt the files.
  • A 16-byte hex value that remarks the victim id.
  • A 16-byte hex value that is the AES key that will be used to encrypt the information that will be sent to the C2.
  • An 8/9-byte array with the behavior flags to control the ransomware behavior.
  • A special array of DWORDs (values of 4 bytes each one) that keep the values to reach the critical points in the configuration.
  • Different blocks encoded and, sometimes, encrypted again to offer the field more protection.

 

After getting the configuration and parsing it, BlackMatter will start checking if it needs to make a login with some user that is in the configuration. In this case it will use the function “LogonUser” with the information of the user(s) that are kept in the configuration; this information has one user and one password: “test@enterprise.com:12345” where “test” is the user, “@enterprise.com” is the domain and “12345” the password.

The next action will be to check with the flag to see if a mutex needs to be created to avoid having multiple instances.

This mutex is unique per machine and is based in the registry entry “MachineGuid” in the key “Cryptography”. If the system has this mutex already the malware will finish itself.

Making a vaccine with a mutex can sometimes be useful but not in this case as the developers change the algorithm and only need to set the flag to false to avoid creating it.

FIGURE 16. Creation of the mutex to avoid multiple instances

After, it will check if it needs to send information to the C2. If it does (usually, but not always) it will get information of the victim machine, such as username, computer name, size of the hard disks, and other information that is useful to the malware developers to know how many machines are infected.

This information is encoded with base64 and encrypted with AES using the key in the configuration.

FIGURE 17. Encrypted information sent to the C2

The C2 addresses are in the configuration (but not all samples have them, in this case the flag to send is false). The malware will try to connect to the C2 using a normal protocol or will use SSL checking the initial “http” of the string.

FIGURE 18. Get information of the victim machine and user

The information is prepared in some strings decrypted from the malware and sent in a POST message.

FIGURE 19. Choose to send by HTTP or HTTPS

The message has values to mislead checks and to try and hide the true information as garbage. This “fake” data is calculated randomly.

The C2 returns garbage data but the malware will check if it starts and ends with the characters “{“  and “}”; if it does the malware will ignore sending the information to another C2.

FIGURE 20. Checking for a reply from the C2 after sending

BlackMatter is a multithread application and the procedure to send data to the C2 is done by a secondary thread.

After that, BlackMatter will enumerate all units that are FIXED and REMOVABLE to destroy the recycle bin contents. The malware makes it for each unit that has it and are the correct type. One difference with DarkSide is that it has a flag for this behavior while  BlackMatter does not.

The next action is to delete the shadow volumes using COM to try and avoid detection using the normal programs to manage the shadow volumes. This differs with DarkSide that has a flag for this purpose.

FIGURE 21. Destruction of the shadow volumes using COM

BlackMatter will check another flag and will enumerate all services based on one list in the configuration and will stop target services and delete them.

This behavior is the same as DarkSide.

FIGURE 22. Stopping services and deleting them

Processes will be checked and terminated as with DarkSide, based on other configuration flags.

After terminating the processes BlackMatter will stop the threads from entering suspension or hibernating if someone is using the computer to prevent either of those outcomes occurring when it is encrypting files. This is done using the function “ZwSetThreadExecutionState”.

FIGURE 23. Preventing the machine being suspended or hibernated

The next action will be to enumerate all units, fixed and on the network, and create threads to encrypt the files. BlackMatter uses Salsa20 to encrypt some part of the file and will save a new block in the end of the file, protected with the RSA key embedded in the configuration with the Salsa20 keys used to encrypt it. This makes BlackMatter slower than many other ransomwares.

After the encryption it will send to the C2 all information about the encryption process, how many files were crypted, how many files failed, and so on. This information is sent in the manner previously described, but only if the config is set to true.

FIGURE 24. Release of the mutex

If one mutex was created in this moment it will be released. Later it will check the way that the machine boots with the function “GetSystemMetrics”. If the boot was done in Safe Mode BlackMatter will set some keys for persistence in the registry for the next reboot and then attack the system, changing the desktop wallpaper.

FIGURE 25. Determining whether the system boots in safe mode or normal mode

Of course, it will disable the safeboot options in the machine and reboot it (it is one of the reasons why it needs the privilege of shutdown).

To ensure it can launch in safe mode, the persistence key value with the path of the malware will start with a ‘*’.

FIGURE 26. Setting the persistance registry key

If the machine starts in the normal way, it will change the desktop wallpaper with an alternative generated in runtime with some text about the ransom note.

FIGURE 27. BlackMatter makes the new wallpaper in runtime

VERSIONS 1.9 AND 2.0

The new versions have some differences compared with versions 1.2 to 1.6:

  • Changes in the stub generation code. Previously only one type of stub was used, but in more recent versions several types of stubs are employed, with one chosen randomly per function. Anyways the stubs can be removed without any problem by patching the binary.
  • A new byte flag in the configuration that remarks if it needs to print the ransom note using the available printer in the system. Very similar to Ryuk but instead BlackMatter uses APIs from “winspool.drv”.
  • Removed one C2 domain that was shut down by the provider.

Additional changes in version 2.0:

  • This version changes the crypto algorithm to protect the configuration making it more complex to decrypt it.
  • Removed the last C2 that was shut down by the provider.
  • Added a new C2 domain.

These changes suggest the developers are active on social media, with an interest in malware and security researchers.

VACCINE

Unlike some ransomware we’ve seen in the past, such as GandCrab , BlackMatter has good code, but it does have some design flaws that can be used in some cases to avoid having the malware encrypt the files.

This vaccine is not intended to be used in the normal way, rather only in special cases as, while it works, other programs can be affected (we obviously cannot test all third party programs but potential issues are likely to include data corruption and unpredictable behavior), and the fix is not permanent.

Steps to make the vaccine (proceed at your own risk):

  • Open regedit (or another registry editor) and go to the key in HKEY_LOCAL_MACHINE> Cryptography.
  • In this key can be seen a string value named “MachineGuid” with a special value. This value is unique for the machine and is used for some applications to identify the machine. BlackMatter uses it to make the mutex and, very importantly, the new extension for the encrypted files.
  • Make a new value of type string with a random name and put the same value as seen in “MachineGuid” to have a backup of it.
  • Remove the “MachineGuid” value, and then make it again but with the binary type Instead of string type, with the same name, “MachineGuid”.
  • Close the registry editor.

In this moment BlackMatter cannot affect the machine as it needs the registry key to make the ransom extension, and the most important thing is, if it cannot make it, it will return the function WITHOUT decrypting the config that is needed too. In this case it will destroy the recycle bin and shadow volumes anyways but later it will finish as it does not have any behavior to do, RSA Key to protect the files, or anything to send to the C2 as the flag was never read from the config (and the default values are false for all of them).

Though the behavior of other programs may be unpredictable, the vaccine is easy to make, and the system will boot, showing that the BlackMatter programmers made a mistake in the design of the code.

This vaccine works for all versions, including 2.0.

MITRE ATT&CK

The sample uses the following MITRE ATT&CK™ techniques:

Technique ID Technique Description Observable
T1134 Access Token Manipulation BlackMatter accesses and manipulates different process tokens.
T1486 Data Encrypted for Impact BlackMatter encrypts files using a custom Salsa20 algorithm and RSA.
T1083 File and Directory Discovery

 

BlackMatter uses native functions to enumerate files and directories searching for targets to encrypt.
T1222.001 Windows File and Directory Permissions Modification BlackMatter executes the command icacls “<DriveLetter>:\*” /grant Everyone: F /T /C /Q to grant full access to the drive.
T1562.001 Disable or Modify Tools BlackMatter stops services related to endpoint security software.
T1106 Native API BlackMatter uses native API functions in all code.
T1057 Process Discovery BlackMatter enumerates all processes to try to discover security programs and terminate them.
T1489 Service Stop BlackMatter stops services.
T1497.001 System Checks BlackMatter tries to detect debuggers, checking the memory reserved in the heap.
T1135 Network Share Discovery BlackMatter will attempt to discover network shares by building a UNC path in the following format for each driver letter, from A to Z: \\<IP>\<drive letter>$
T1082 System Information Discovery BlackMatter uses functions to retrieve information about the target system.
T1592 Gather Victim Host Information BlackMatter retrieves information about the user and machine.
T1070 Valid Accounts BlackMatter uses valid accounts to logon to the victim network.
T1547 Boot or Logon Autostart Execution BlackMatter installs persistence in the registry.
T1102 Query Registry BlackMatter queries the registry for information.
T1018 Remote System Discovery BlackMatter enumerates remote machines in the domain.
T1112 Modify Registry BlackMatter changes registry keys and values and sets new ones.

CONCLUSION

BlackMatter is a new threat in the ransomware field and its developers know full well how to use it to attack their targets. The coding style is remarkably similar to DarkSide and, in our opinion, the people behind it are either the same or have a very close relationship.

BlackMatter shares a lot of ideas, and to some degree code, with DarkSide:

  • Configurations are remarkably similar, especially with the last version of Darkside, besides the change in the algorithm to protect it which, despite having less options, remains with the same structure. We do not think that the developers of BlackMatter achieved this similarity by reversing DarkSide as that level of coding skill would have allowed them to create an entirely new ransomware from the ground up. Also, the idea that the DarkSide developers gave or sold the original code to them does not make any sense as it is an old product.
  • Dynamic functions are used in a similar way to DarkSide.
  • It uses the same compression algorithm for the configuration.
  • The victim id is kept in the same way as DarkSide.

It is important to keep your McAfee Enterprise products updated to the latest detections and avoid insecure remote desktop connections, maintain secure passwords that are changed on a regular basis, take precautions against phishing emails, and do not connect unnecessary devices to the enterprise network.

Despite some effective coding, mistakes have been made by the developers, allowing the program to be read, and a vaccine to be created, though we will stress again that it can affect other programs and is not a permanent solution and should be employed only if you accept the risks associated with it.

The post BlackMatter Ransomware Analysis; The Dark Side Returns appeared first on McAfee Blog.

Executive Spotlight: Q&A with Lead Scientist & Sr. Principal Engineer, Christiaan Beek

By Melissa Gaffney

Welcome back to our executive blog series, where I chat with some of the pivotal players behind McAfee Enterprise and the Advanced Threat Research Team to hear their takes on today’s security trends, challenges, and opportunities for companies across the globe.

Q: What got you interested in technology and threat research?

As a little kid, I was always fascinated by technology. I would wrench open devices to study the inner workings, and try to assemble again. At age 12 I worked for three years to assemble my first computer-setup: a Commodore 64, disk-drive, and printer followed by an Amiga with modem. From that point, it was a journey from sysadmin to ethical hacking into specializing in digital forensics and joining FoundStone to setup their EMEA Incident Response team. As I witnessed multiple malware incidents and later some of the largest cyber-attacks ever, I got fascinated by all the mechanics around threat research. From this, I made a move to lead and envision new ways (threat) research can assist both responders and customers.

Q: If you could relive any moment of your life, which would it be?

Good question. There are so many moments to be thankful for that I cannot choose one but will mention a few that might sound obvious: My baptism, marrying my wife, and the birth of my kids.

Q: What are some of the trends you are currently noticing across the threat landscape?

Of course, we still have ransomware around as an ongoing issue that keeps evolving and impacting not only companies around the world, but also our lives more and more when fuel is not available, supermarkets are closed, and delivery of goods cannot be executed. Secondly, I would say the volume and number of attacks that happen have increased dramatically over the years. The moment a vulnerability is announced, within days, a proof-of-concept is available and within a week it is used by adversaries (either cybercrime or nation-state motivated). The feedback from our customers has been tremendously positive.

Q: How do you react to constantly changing threats in the market?

The only way to respond to the constant changing threats is to be flexible and willing to change. What works today might not work tomorrow, which should be part of your strategy when it comes to threat hunting, threat detection, and protection. My team is eager to learn and we are committed to protect our customers, innovate new research techniques, and adapt that into our technology.

The post Executive Spotlight: Q&A with Lead Scientist & Sr. Principal Engineer, Christiaan Beek appeared first on McAfee Blog.

❌