FreshRSS

🔒
❌ About FreshRSS
There are new available articles, click to refresh the page.
Before yesterdayYour RSS feeds

U.S. Treasury Sanctions Russian Money Launderer in Cybercrime Crackdown

By Newsroom
The U.S. Department of the Treasury imposed sanctions against a 37-year-old Russian woman for taking part in the laundering of virtual currency for the country's elites and cybercriminal crews, including the Ryuk ransomware group. Ekaterina Zhdanova, per the department, is said to have facilitated large cross border transactions to assist Russian individuals to gain access to Western financial

SoundThinking, Maker of ShotSpotter, Is Buying Parts of PredPol Creator Geolitica

By Dhruv Mehrotra, Dell Cameron
SoundThinking is purchasing parts of Geolitica, the company that created PredPol. Experts say the acquisition marks a new era of companies dictating how police operate.

LastPass: ‘Horse Gone Barn Bolted’ is Strong Password

By BrianKrebs

The password manager service LastPass is now forcing some of its users to pick longer master passwords. LastPass says the changes are needed to ensure all customers are protected by their latest security improvements. But critics say the move is little more than a public relations stunt that will do nothing to help countless early adopters whose password vaults were exposed in a 2022 breach at LastPass.

LastPass sent this notification to users earlier this week.

LastPass told customers this week they would be forced to update their master password if it was less than 12 characters. LastPass officially instituted this change back in 2018, but some undisclosed number of the company’s earlier customers were never required to increase the length of their master passwords.

This is significant because in November 2022, LastPass disclosed a breach in which hackers stole password vaults containing both encrypted and plaintext data for more than 25 million users.

Since then, a steady trickle of six-figure cryptocurrency heists targeting security-conscious people throughout the tech industry has led some security experts to conclude that crooks likely have succeeded at cracking open some of the stolen LastPass vaults.

KrebsOnSecurity last month interviewed a victim who recently saw more than three million dollars worth of cryptocurrency siphoned from his account. That user signed up with LastPass nearly a decade ago, stored their cryptocurrency seed phrase there, and yet never changed his master password — which was just eight characters. Nor was he ever forced to improve his master password.

That story cited research from Adblock Plus creator Wladimir Palant, who said LastPass failed to upgrade many older, original customers to more secure encryption protections that were offered to newer customers over the years.

For example, another important default setting in LastPass is the number of “iterations,” or how many times your master password is run through the company’s encryption routines. The more iterations, the longer it takes an offline attacker to crack your master password.

Palant said that for many older LastPass users, the initial default setting for iterations was anywhere from “1” to “500.” By 2013, new LastPass customers were given 5,000 iterations by default. In February 2018, LastPass changed the default to 100,100 iterations. And very recently, it upped that again to 600,000. Still, Palant and others impacted by the 2022 breach at LastPass say their account security settings were never forcibly upgraded.

Palant called this latest action by LastPass a PR stunt.

“They sent this message to everyone, whether they have a weak master password or not – this way they can again blame the users for not respecting their policies,” Palant said. “But I just logged in with my weak password, and I am not forced to change it. Sending emails is cheap, but they once again didn’t implement any technical measures to enforce this policy change.”

Either way, Palant said, the changes won’t help people affected by the 2022 breach.

“These people need to change all their passwords, something that LastPass still won’t recommend,” Palant said. “But it will somewhat help with the breaches to come.”

LastPass CEO Karim Toubba said changing master password length (or even the master password itself) is not designed to address already stolen vaults that are offline.

“This is meant to better protect customers’ online vaults and encourage them to bring their accounts up to the 2018 LastPass standard default setting of a 12-character minimum (but could opt out from),” Toubba said in an emailed statement. “We know that some customers may have chosen convenience over security and utilized less complex master passwords despite encouragement to use our (or others) password generator to do otherwise.”

A basic functionality of LastPass is that it will pick and remember lengthy, complex passwords for each of your websites or online services. To automatically populate the appropriate credentials at any website going forward, you simply authenticate to LastPass using your master password.

LastPass has always emphasized that if you lose this master password, that’s too bad because they don’t store it and their encryption is so strong that even they can’t help you recover it.

But experts say all bets are off when cybercrooks can get their hands on the encrypted vault data itself — as opposed to having to interact with LastPass via its website. These so-called “offline” attacks allow the bad guys to conduct unlimited and unfettered “brute force” password cracking attempts against the encrypted data using powerful computers that can each try millions of password guesses per second.

A chart on Palant’s blog post offers an idea of how increasing password iterations dramatically increases the costs and time needed by the attackers to crack someone’s master password. Palant said it would take a single high-powered graphics card about a year to crack a password of average complexity with 500 iterations, and about 10 years to crack the same password run through 5,000 iterations.

Image: palant.info

However, these numbers radically come down when a determined adversary also has other large-scale computational assets at their disposal, such as a bitcoin mining operation that can coordinate the password-cracking activity across multiple powerful systems simultaneously.

Meaning, LastPass users whose vaults were never upgraded to higher iterations and whose master passwords were weak (less than 12 characters) likely have been a primary target of distributed password-cracking attacks ever since the LastPass user vaults were stolen late last year.

Asked why some LastPass users were left behind on older security minimums, Toubba said a “small percentage” of customers had corrupted items in their password vaults that prevented those accounts from properly upgrading to the new requirements and settings.

“We have been able to determine that a small percentage of customers have items in their vaults that are corrupt and when we previously utilized automated scripts designed to re-encrypt vaults when the master password or iteration count is changed, they did not complete,” Toubba said. “These errors were not originally apparent as part of these efforts and, as we have discovered them, we have been working to be able to remedy this and finish the re-encryption.”

Nicholas Weaver, a researcher at University of California, Berkeley’s International Computer Science Institute (ICSI) and lecturer at UC Davis, said LastPass made a huge mistake years ago by not force-upgrading the iteration count for existing users.

“And now this is blaming the users — ‘you should have used a longer passphrase’ — not them for having weak defaults that were never upgraded for existing users,” Weaver said. “LastPass in my book is one step above snake-oil. I used to be, ‘Pick whichever password manager you want,’ but now I am very much, ‘Pick any password manager but LastPass.'”

Asked why LastPass isn’t recommending that users change all of the passwords secured by the encrypted master password that was stolen when the company got hacked last year, Toubba said it’s because “the data demonstrates that the majority of our customers follow our recommendations (or greater), and the probability of successfully brute forcing vault encryption is greatly reduced accordingly.”

“We’ve been telling customers since December of 2022 that they should be following recommended guidelines,” Toubba continued. “And if they haven’t followed the guidelines we recommended that they change their downstream passwords.”

Barracuda Urges Replacing — Not Patching — Its Email Security Gateways

By BrianKrebs

It’s not often that a zero-day vulnerability causes a network security vendor to urge customers to physically remove and decommission an entire line of affected hardware — as opposed to just applying software updates. But experts say that is exactly what transpired this week with Barracuda Networks, as the company struggled to combat a sprawling malware threat which appears to have undermined its email security appliances in such a fundamental way that they can no longer be safely updated with software fixes.

The Barracuda Email Security Gateway (ESG) 900 appliance.

Campbell, Calif. based Barracuda said it hired incident response firm Mandiant on May 18 after receiving reports about unusual traffic originating from its Email Security Gateway (ESG) devices, which are designed to sit at the edge of an organization’s network and scan all incoming and outgoing email for malware.

On May 19, Barracuda identified that the malicious traffic was taking advantage of a previously unknown vulnerability in its ESG appliances, and on May 20 the company pushed a patch for the flaw to all affected appliances (CVE-2023-2868).

In its security advisory, Barracuda said the vulnerability existed in the Barracuda software component responsible for screening attachments for malware. More alarmingly, the company said it appears attackers first started exploiting the flaw in October 2022.

But on June 6, Barracuda suddenly began urging its ESG customers to wholesale rip out and replace — not patch — affected appliances.

“Impacted ESG appliances must be immediately replaced regardless of patch version level,” the company’s advisory warned. “Barracuda’s recommendation at this time is full replacement of the impacted ESG.”

In a statement, Barracuda said it will be providing the replacement product to impacted customers at no cost, and that not all ESG appliances were compromised.

“No other Barracuda product, including our SaaS email solutions, were impacted by this vulnerability,” the company said. “If an ESG appliance is displaying a notification in the User Interface, the ESG appliance had indicators of compromise. If no notification is displayed, we have no reason to believe that the appliance has been compromised at this time.”

Nevertheless, the statement says that “out of an abundance of caution and in furtherance of our containment strategy, we recommend impacted customers replace their compromised appliance.”

“As of June 8, 2023, approximately 5% of active ESG appliances worldwide have shown any evidence of known indicators of compromise due to the vulnerability,” the statement continues. “Despite deployment of additional patches based on known IOCs, we continue to see evidence of ongoing malware activity on a subset of the compromised appliances. Therefore, we would like customers to replace any compromised appliance with a new unaffected device.”

Rapid7‘s Caitlin Condon called this remarkable turn of events “fairly stunning,” and said there appear to be roughly 11,000 vulnerable ESG devices still connected to the Internet worldwide.

“The pivot from patch to total replacement of affected devices is fairly stunning and implies the malware the threat actors deployed somehow achieves persistence at a low enough level that even wiping the device wouldn’t eradicate attacker access,” Condon wrote.

Barracuda said the malware was identified on a subset of appliances that allowed the attackers persistent backdoor access to the devices, and that evidence of data exfiltration was identified on some systems.

Rapid7 said it has seen no evidence that attackers are using the flaw to move laterally within victim networks. But that may be small consolation for Barracuda customers now coming to terms with the notion that foreign cyberspies probably have been hoovering up all their email for months.

Nicholas Weaver, a researcher at University of California, Berkeley’s International Computer Science Institute (ICSI), said it is likely that the malware was able to corrupt the underlying firmware that powers the ESG devices in some irreparable way.

“One of the goals of malware is to be hard to remove, and this suggests the malware compromised the firmware itself to make it really hard to remove and really stealthy,” Weaver said. “That’s not a ransomware actor, that’s a state actor. Why? Because a ransomware actor doesn’t care about that level of access. They don’t need it. If they’re going for data extortion, it’s more like a smash-and-grab. If they’re going for data ransoming, they’re encrypting the data itself — not the machines.”

In addition to replacing devices, Barracuda says ESG customers should also rotate any credentials connected to the appliance(s), and check for signs of compromise dating back to at least October 2022 using the network and endpoint indicators the company has released publicly.

Update, June 9, 11:55 a.m. ET: Barracuda has issued an updated statement about the incident, portions of which are now excerpted above.

Hackers Claim They Breached T-Mobile More Than 100 Times in 2022

By BrianKrebs

Image: Shutterstock.com

Three different cybercriminal groups claimed access to internal networks at communications giant T-Mobile in more than 100 separate incidents throughout 2022, new data suggests. In each case, the goal of the attackers was the same: Phish T-Mobile employees for access to internal company tools, and then convert that access into a cybercrime service that could be hired to divert any T-Mobile user’s text messages and phone calls to another device.

The conclusions above are based on an extensive analysis of Telegram chat logs from three distinct cybercrime groups or actors that have been identified by security researchers as particularly active in and effective at “SIM-swapping,” which involves temporarily seizing control over a target’s mobile phone number.

Countless websites and online services use SMS text messages for both password resets and multi-factor authentication. This means that stealing someone’s phone number often can let cybercriminals hijack the target’s entire digital life in short order — including access to any financial, email and social media accounts tied to that phone number.

All three SIM-swapping entities that were tracked for this story remain active in 2023, and they all conduct business in open channels on the instant messaging platform Telegram. KrebsOnSecurity is not naming those channels or groups here because they will simply migrate to more private servers if exposed publicly, and for now those servers remain a useful source of intelligence about their activities.

Each advertises their claimed access to T-Mobile systems in a similar way. At a minimum, every SIM-swapping opportunity is announced with a brief “Tmobile up!” or “Tmo up!” message to channel participants. Other information in the announcements includes the price for a single SIM-swap request, and the handle of the person who takes the payment and information about the targeted subscriber.

The information required from the customer of the SIM-swapping service includes the target’s phone number, and the serial number tied to the new SIM card that will be used to receive text messages and phone calls from the hijacked phone number.

Initially, the goal of this project was to count how many times each entity claimed access to T-Mobile throughout 2022, by cataloging the various “Tmo up!” posts from each day and working backwards from Dec. 31, 2022.

But by the time we got to claims made in the middle of May 2022, completing the rest of the year’s timeline seemed unnecessary. The tally shows that in the last seven-and-a-half months of 2022, these groups collectively made SIM-swapping claims against T-Mobile on 104 separate days — often with multiple groups claiming access on the same days.

The 104 days in the latter half of 2022 in which different known SIM-swapping groups claimed access to T-Mobile employee tools.

KrebsOnSecurity shared a large amount of data gathered for this story with T-Mobile. The company declined to confirm or deny any of these claimed intrusions. But in a written statement, T-Mobile said this type of activity affects the entire wireless industry.

“And we are constantly working to fight against it,” the statement reads. “We have continued to drive enhancements that further protect against unauthorized access, including enhancing multi-factor authentication controls, hardening environments, limiting access to data, apps or services, and more. We are also focused on gathering threat intelligence data, like what you have shared, to help further strengthen these ongoing efforts.”

TMO UP!

While it is true that each of these cybercriminal actors periodically offer SIM-swapping services for other mobile phone providers — including AT&T, Verizon and smaller carriers — those solicitations appear far less frequently in these group chats than T-Mobile swap offers. And when those offers do materialize, they are considerably more expensive.

The prices advertised for a SIM-swap against T-Mobile customers in the latter half of 2022 ranged between USD $1,000 and $1,500, while SIM-swaps offered against AT&T and Verizon customers often cost well more than twice that amount.

To be clear, KrebsOnSecurity is not aware of specific SIM-swapping incidents tied to any of these breach claims. However, the vast majority of advertisements for SIM-swapping claims against T-Mobile tracked in this story had two things in common that set them apart from random SIM-swapping ads on Telegram.

First, they included an offer to use a mutually trusted “middleman” or escrow provider for the transaction (to protect either party from getting scammed). More importantly, the cybercriminal handles that were posting ads for SIM-swapping opportunities from these groups generally did so on a daily or near-daily basis — often teasing their upcoming swap events in the hours before posting a “Tmo up!” message announcement.

In other words, if the crooks offering these SIM-swapping services were ripping off their customers or claiming to have access that they didn’t, this would be almost immediately obvious from the responses of the more seasoned and serious cybercriminals in the same chat channel.

There are plenty of people on Telegram claiming to have SIM-swap access at major telecommunications firms, but a great many such offers are simply four-figure scams, and any pretenders on this front are soon identified and banned (if not worse).

One of the groups that reliably posted “Tmo up!” messages to announce SIM-swap availability against T-Mobile customers also reliably posted “Tmo down!” follow-up messages announcing exactly when their claimed access to T-Mobile employee tools was discovered and revoked by the mobile giant.

A review of the timestamps associated with this group’s incessant “Tmo up” and “Tmo down” posts indicates that while their claimed access to employee tools usually lasted less than an hour, in some cases that access apparently went undiscovered for several hours or even days.

TMO TOOLS

How could these SIM-swapping groups be gaining access to T-Mobile’s network as frequently as they claim? Peppered throughout the daily chit-chat on their Telegram channels are solicitations for people urgently needed to serve as “callers,” or those who can be hired to social engineer employees over the phone into navigating to a phishing website and entering their employee credentials.

Allison Nixon is chief research officer for the New York City-based cybersecurity firm Unit 221B. Nixon said these SIM-swapping groups will typically call employees on their mobile devices, pretend to be someone from the company’s IT department, and then try to get the person on the other end of the line to visit a phishing website that mimics the company’s employee login page.

Nixon argues that many people in the security community tend to discount the threat from voice phishing attacks as somehow “low tech” and “low probability” threats.

“I see it as not low-tech at all, because there are a lot of moving parts to phishing these days,” Nixon said. “You have the caller who has the employee on the line, and the person operating the phish kit who needs to spin it up and down fast enough so that it doesn’t get flagged by security companies. Then they have to get the employee on that phishing site and steal their credentials.”

In addition, she said, often there will be yet another co-conspirator whose job it is to use the stolen credentials and log into employee tools. That person may also need to figure out how to make their device pass “posture checks,” a form of device authentication that some companies use to verify that each login is coming only from employer-issued phones or laptops.

For aspiring criminals with little experience in scam calling, there are plenty of sample call transcripts available on these Telegram chat channels that walk one through how to impersonate an IT technician at the targeted company — and how to respond to pushback or skepticism from the employee. Here’s a snippet from one such tutorial that appeared recently in one of the SIM-swapping channels:

“Hello this is James calling from Metro IT department, how’s your day today?”

(yea im doing good, how r u)

i’m doing great, thank you for asking

i’m calling in regards to a ticket we got last week from you guys, saying you guys were having issues with the network connectivity which also interfered with [Microsoft] Edge, not letting you sign in or disconnecting you randomly. We haven’t received any updates to this ticket ever since it was created so that’s why I’m calling in just to see if there’s still an issue or not….”

TMO DOWN!

The TMO UP data referenced above, combined with comments from the SIM-swappers themselves, indicate that while many of their claimed accesses to T-Mobile tools in the middle of 2022 lasted hours on end, both the frequency and duration of these events began to steadily decrease as the year wore on.

T-Mobile declined to discuss what it may have done to combat these apparent intrusions last year. However, one of the groups began to complain loudly in late October 2022 that T-Mobile must have been doing something that was causing their phished access to employee tools to die very soon after they obtained it.

One group even remarked that they suspected T-Mobile’s security team had begun monitoring their chats.

Indeed, the timestamps associated with one group’s TMO UP/TMO DOWN notices show that their claimed access was often limited to less than 15 minutes throughout November and December of 2022.

Whatever the reason, the calendar graphic above clearly shows that the frequency of claimed access to T-Mobile decreased significantly across all three SIM-swapping groups in the waning weeks of 2022.

SECURITY KEYS

T-Mobile US reported revenues of nearly $80 billion last year. It currently employs more than 71,000 people in the United States, any one of whom can be a target for these phishers.

T-Mobile declined to answer questions about what it may be doing to beef up employee authentication. But Nicholas Weaver, a researcher and lecturer at University of California, Berkeley’s International Computer Science Institute, said T-Mobile and all the major wireless providers should be requiring employees to use physical security keys for that second factor when logging into company resources.

A U2F device made by Yubikey.

“These breaches should not happen,” Weaver said. “Because T-Mobile should have long ago issued all employees security keys and switched to security keys for the second factor. And because security keys provably block this style of attack.”

The most commonly used security keys are inexpensive USB-based devices. A security key implements a form of multi-factor authentication known as Universal 2nd Factor (U2F), which allows the user to complete the login process simply by inserting the USB key and pressing a button on the device. The key works without the need for any special software drivers.

The allure of U2F devices for multi-factor authentication is that even if an employee who has enrolled a security key for authentication tries to log in at an impostor site, the company’s systems simply refuse to request the security key if the user isn’t on their employer’s legitimate website, and the login attempt fails. Thus, the second factor cannot be phished, either over the phone or Internet.

THE ROLE OF MINORS IN SIM-SWAPPING

Nixon said one confounding aspect of SIM-swapping is that these criminal groups tend to recruit teenagers to do their dirty work.

“A huge reason this problem has been allowed to spiral out of control is because children play such a prominent role in this form of breach,” Nixon said.

Nixon said SIM-swapping groups often advertise low-level jobs on places like Roblox and Minecraft, online games that are extremely popular with young adolescent males.

“Statistically speaking, that kind of recruiting is going to produce a lot of people who are underage,” she said. “They recruit children because they’re naive, you can get more out of them, and they have legal protections that other people over 18 don’t have.”

For example, she said, even when underage SIM-swappers are arrested, the offenders tend to go right back to committing the same crimes as soon as they’re released.

In January 2023, T-Mobile disclosed that a “bad actor” stole records on roughly 37 million current customers, including their name, billing address, email, phone number, date of birth, and T-Mobile account number.

In August 2021, T-Mobile acknowledged that hackers made off with the names, dates of birth, Social Security numbers and driver’s license/ID information on more than 40 million current, former or prospective customers who applied for credit with the company. That breach came to light after a hacker began selling the records on a cybercrime forum.

In the shadow of such mega-breaches, any damage from the continuous attacks by these SIM-swapping groups can seem insignificant by comparison. But Nixon says it’s a mistake to dismiss SIM-swapping as a low volume problem.

“Logistically, you may only be able to get a few dozen or a hundred SIM-swaps in a day, but you can pick any customer you want across their entire customer base,” she said. “Just because a targeted account takeover is low volume doesn’t mean it’s low risk. These guys have crews that go and identify people who are high net worth individuals and who have a lot to lose.”

Nixon said another aspect of SIM-swapping that causes cybersecurity defenders to dismiss the threat from these groups is the perception that they are full of low-skilled “script kiddies,” a derisive term used to describe novice hackers who rely mainly on point-and-click hacking tools.

“They underestimate these actors and say this person isn’t technically sophisticated,” she said. “But if you’re rolling around in millions worth of stolen crypto currency, you can buy that sophistication. I know for a fact some of these compromises were at the hands of these ‘script kiddies,’ but they’re not ripping off other people’s scripts so much as hiring people to make scripts for them. And they don’t care what gets the job done, as long as they get to steal the money.”

COVID-bit: New COVert Channel to Exfiltrate Data from Air-Gapped Computers

By Ravie Lakshmanan
An unconventional data exfiltration method leverages a previously undocumented covert channel to leak sensitive information from air-gapped systems. "The information emanates from the air-gapped computer over the air to a distance of 2 m and more and can be picked up by a nearby insider or spy with a mobile phone or laptop," Dr. Mordechai Guri, the head of R&D in the Cyber Security Research

“This Connection Is Not Private” – What it Means and How to Protect Your Privacy

By McAfee

Have you ever been browsing online and clicked a link or search result that took you to a site that triggers a “your connection is not private” or “your connection is not secureerror code? If you’re not too interested in that particular result, you may simply move on to another result option. But if you’re tempted to visit the site anyway, you should be sure you understand what the warning means, what the risks are, and how to bypass the error if you need to.   

What does “this connection is not private” mean?

A “your connection is not private” error means that your browser cannot determine with certainty that a website has safe encryption protocols in place to protect your device and data. You can bump into this error on any device connected to the internet — computer, smartphone, or tablet.  

So, what exactly is going on when you see the “this connection is not private” error?  

For starters, it’s important to know that seeing the error is just a warning, and it does not mean any of your private information is compromised. A “your connection is not privateerror means the website you were trying to visit does not have an up-to-date SSL (secure sockets layer) security certificate. 

Website owners must maintain the licensing regularly to ensure the site encryption capabilities are up to date. If the website’s SSL certificate is outdated, it means the site owners have not kept their encryption licensing current, but it doesn’t necessarily mean they are up to no good. Even major websites like LinkedIn have had momentary lapses that would throw the error. LinkedIn mistakenly let their subdomain SSL certificates lapse.  

In late 2021, a significant provider of SSL certificates, Let’s Encrypt, went out of business. When their root domain officially lapsed, it created issues for many domain names and SSL certificates owned by legitimate companies. The privacy error created problems for unwitting businesses, as many of their website visitors were rightfully concerned about site security.  

While it does not always mean a website is unsafe to browse, it should not be ignored. A secure internet connection is critical to protecting yourself online. Many nefarious websites are dangerous to visit, and this SSL certificate error will protect you from walking into them unaware.   

SSL certification standards have helped make the web a safer place to transact. It helps ensure online activities like paying bills online, ordering products, connecting to online banking, or keeping your private email accounts safe and secure. Online security continues to improve with a new Transport Layer Security (TLS) standard, which promises to be the successor protocol to SSL. 

So be careful whenever visiting sites that trigger the “connection is not private” error, as those sites can potentially make your personal data less secure and make your devices vulnerable to viruses and malware 

Note: The “your connection is not private” error is Google Chrome‘s phrasing. Microsoft Edge or Mozilla Firefox users will instead see a “your connection is not secure” error as the warning message.   

How to fix the “connection is not private” error

If you feel confident that a website or page is safe, despite the warning from your web browser, there are a few things you can do to troubleshoot the error.  

  • Refresh the page. In some cases, the error is just a momentary glitch. Try reloading the page to rule out a temporary error.  
  • Close browser and reopen. Closing and reopening your web browser might also help clear a temporary glitch.  
  • If you’re on public WiFi, think twice. Hackers often exploit public WiFi because their routers are usually not as secure or well-maintained for security. Some public WiFi networks may not have an SSL connection, or they may limit your access to websites. You can safely browse more securely in public spaces if you have an antivirus software or virtual private network (VPN) solution. 
  • Use “Incognito” mode. The most used browsers (Google Chrome browser, Mac‘s Safari, Mozilla Firefox, and Microsoft Edge) offer an “Incognito mode” that lets you browse without data collecting in your history or cache. Open the site in a new incognito window and see if the error still appears.  
  • Clear the cache on your browser. While cookies make browsing the web more convenient and personalized, they also can hold on to sensitive information. Hackers will take advantage of cached data to try and get passwords, purchase information, and anything else they can exploit. Clear browsing data before going to a site with the “connection is not secure” error to help limit available data for hackers 
  • Check the computer’s date and time. If you frequently see the “connection is not private” error, you should check and ensure your computer has the accurate time and date. Your computer’s clock can sometimes have time and date stamp issues and get glitchy in multiple ways. If it’s incorrect, adjust the date and set the time to the correct settings.  
  • Check your antivirus software. If your antivirus software is sensitive, you may have to disable it momentarily to bypass the error. Antivirus software protects you, so you should be careful to remember to turn the software back on again after you’ve bypassed the error.  
  • Be sure your browsers and operating systems are up to date. You should always keep your critical software and the operating system fully updated. An outdated browser can start getting buggy and can increase the occurrence of this kind of error.  
  • Research the website. Do a quick search for the company of the website you wish to visit and make sure they are a legitimate business. You can search for reviews, Better Business Bureau ratings, or check for forums to see if others are having the same issue. Be sure you are spelling the website address correctly and that you have the correct URL for the site. Hackers can take advantage of misspellings or alternative URLs to try and snare users looking for trusted brands. 
  • If it’s not you, it’s them. If you’ve tried all the troubleshooting techniques above and you still see the error, the problem is likely coming from the site itself. If you’re willing to take your chances (after clearing your browser’s cache), you can click the option to “proceed to the domain,” though it is not recommended. You may have to choose “advanced settings” and click again to visit the site.   

Remember, you are taking your chances anytime you ignore an error. As we mentioned, you could leave yourself vulnerable to hackers after your passwords, personal information, and other risks.  

How to protect your privacy when browsing online

Your data and private information are valuable to hackers, so they will continue to find new ways to try and procure it. Here are some ways to protect yourself and your data when browsing online.  

  • Antivirus solutions are, hands down, your best line of protection against hacking. Solutions like McAfee+ Ultimate offer all the tools you need to secure your data and devices.  
  • Use strong passwords and two-factor authentication when available. 
  • Delete unused browser extensions (or phone apps) to reduce access. 
  • Always keep your operating system and browsers up-to-date. You can open system preferences and choose to update your system automatically. 
  • Use a secure VPN solution to shield your data when browsing. 
  • Use your favorite browser’s incognito mode to reduce the data connected to your devices. 
  • Remove any 3rd party apps from your social media accounts — especially if you’ve recently taken a Facebook quiz or similar (also, don’t take Facebook quizzes). 
  • Engage the highest privacy settings in each of your browsers. 
  • Always check the address bar for HTTPS before sharing credit cards or other sensitive data on a website. 
  • Share less personal and private information on social media.  

Discover how McAfee keeps you and your data safe from threats

As we continue to do more critical business online, we must also do our best to address the risks of the internet’s many conveniences.  

A comprehensive cybersecurity tool like McAfee+ Ultimate can help protect you from online scams, identity theft, and phishing attempts, and ensure you always have a secure connection. McAfee helps keep your sensitive information out of the hands of hackers and can help you keep your digital data footprints lighter with personal data cleanup.  

With McAfee’s experts on your side, you can enjoy everything the web offers with the confidence of total protection. 

The post “This Connection Is Not Private” – What it Means and How to Protect Your Privacy appeared first on McAfee Blog.

Move over Patch Tuesday – it’s Ada Lovelace Day!

By Paul Ducklin
Hacking on actual computers is one thing, but hacking purposefully on imaginary computers is, these days, something we can only imagine.

Aussies Fear Snakes, Spiders and Getting Hacked

By Alex Merton-McCann

Fears and phobias. We all have them. But what are your biggest ones? I absolutely detest snakes but spiders don’t worry me at all. Well, new research by McAfee shows that cybercriminals and the fear of being hacked are now the 5th greatest fear among Aussies.

With news of data breaches and hacking crusades filling our news feed on a regular basis, many of us are becoming more aware and concerned about the threats we face in our increasingly digital world. And McAfee’s latest confirms this with hackers making their way into Australia’s Top 10 Fears.

According to research conducted by McAfee, snakes are the top phobia for Aussies followed by spiders, heights and sharks. Cybercriminals and the fear of being hacked come in in 5th place beating the dentist, bees, ghosts, aeroplane travel and clowns!

Aussie Top 10 Fears and Phobias

  1. Snakes
  2. Spiders
  3. Heights
  4. Sharks
  5. Hackers/Cybercriminals
  6. The dentist
  7. Bees or wasps
  8. Ghosts
  9. Aeroplane travel
  10. Clowns

Why Do We Have Phobias?

Fears and phobias develop when we perceive that we are at risk of pain, or worse, still, death. And while almost a third of respondents nominated snakes as their number one fear, there is less than one-in-fifty thousand chance of being bitten badly enough by a snake to warrant going to hospital in Australia, according to research from the Internal Medicine Journal.

In contrast, McAfee’s analysis of more than 108 billion potential online threats between October and December, identified 202 million of these threats as genuine risks. With a global population of 7.5 billion, that means there is approximately a one in 37 chance of being targeted by cybercrime. Now while this is not a life-threatening situation, these statistics show that chance of us being affected by an online threat is very real.

What Are Our Biggest Cyber Fears?

According to the research, 82% of Aussies believe that being hacked is a growing or high concern. And when you look at the sheer number of reported data breaches so far this year, these statistics make complete sense. Data breaches have affected Bunnings staff, Federal Parliament staff, Marriott guests, Victorian Government staff, QLD Fisheries members, Skoolbag app users and Big W customers plus many more.

Almost 1 in 5 (19%) of those interviewed said their top fear at work is doing something that will result in a data security breach, they will leak sensitive information or infect their corporate IT systems.

The fear that we are in the midst of a cyberwar is another big concern for many Aussies. Cyberwar can be explained as a computer or network-based conflict where parties try to disrupt or take ownership of the activities of other parties, often for strategic, military or cyberespionage purposes. 55% of Aussies believe that a cyberwar is happening right now but we just don’t know about it. And a fifth believe cyber warfare is the biggest threat to our nation.

What Can We Do to Address Our Fear of Being Hacked?

Being proactive about protecting your online life is the absolute best way of reducing the chances of being hacked or being affected by a data breach. Here are my top tips on what you can now to protect yourself:

  1. Be Savvy with Your Passwords

Using a password manager to create unique and complex passwords for each of your online accounts will definitely improve your online safety. If each on your online accounts has a unique password and you are involved in a breach, the hacker won’t be able to use the stolen password details to log into any of your other accounts.

  1. Stop AutoFill on Chrome

Storing your financial data within your browser and being able to populate online forms quickly within seconds makes the autofill function very attractive however it is risky. Autofill will automatically fill out all forms on a page regardless of whether you can see all the boxes. You may just think you are automatically entering your email address into an online form however a savvy hacker could easily design an online form with hidden boxes designed to capture your financial information. So remove all your financial information from Autofill. I know this means you will have to manually enter information each time you purchase but your personal data will be better protected.

  1. Think Before You Click

One of the easiest ways for a cybercriminal to compromise their victim is by using phishing emails to lure consumers into clicking links for products or services that could lead to malware, or a phoney website designed to steal personal information. If the deal seems too good to be true, or the email was not expected, always check directly with the source.

  1. Stay Protected While You Browse

It’s important to put the right security solutions in place in order to surf the web safely. Add an extra layer of security to your browser with McAfee WebAdvisor.

  1. Always Connect with Caution

I know public Wi-Fi might seem like a good idea, but if consumers are not careful, they could be unknowingly exposing personal information or credit card details to cybercriminals who are snooping on the network. If you are a regular Wi-Fi user, I recommend investing in a virtual private network or (VPN) such as McAfee Secure VPN which will ensure your connection is completely secure and that your data remains safe.

While it is tempting, putting our head in the sand and pretending hackers and cybercrime don’t exist puts ourselves and our families at even more risk! Facing our fears and making an action plan is the best way of reducing our worry and stress. So, please commit to being proactive about your family’s online security. Draw up a list of what you can do today to protect your tribe. And if you want to receive regular updates about additional ways you can keep your family safe online, check out my blog.

‘till next time.

Alex x

The post Aussies Fear Snakes, Spiders and Getting Hacked appeared first on McAfee Blog.

Air-Gapped Devices Can Send Covert Morse Signals via Network Card LEDs

By Ravie Lakshmanan
A security researcher who has a long line of work demonstrating novel data exfiltration methods from air-gapped systems has come up with yet another technique that involves sending Morse code signals via LEDs on network interface cards (NICs). The approach, codenamed ETHERLED, comes from Dr. Mordechai Guri, the head of R&D in the Cyber Security Research Center in the Ben Gurion University of the

It Might Be Our Data, But It’s Not Our Breach

By BrianKrebs

Image: Shutterstock.

A cybersecurity firm says it has intercepted a large, unique stolen data set containing the names, addresses, email addresses, phone numbers, Social Security Numbers and dates of birth on nearly 23 million Americans. The firm’s analysis of the data suggests it corresponds to current and former customers of AT&T. The telecommunications giant stopped short of saying the data wasn’t theirs, but it maintains the records do not appear to have come from its systems and may be tied to a previous data incident at another company.

Milwaukee-based cybersecurity consultancy Hold Security said it intercepted a 1.6 gigabyte compressed file on a popular dark web file-sharing site. The largest item in the archive is a 3.6 gigabyte file called “dbfull,” and it contains 28.5 million records, including 22.8 million unique email addresses and 23 million unique SSNs. There are no passwords in the database.

Hold Security founder Alex Holden said a number of patterns in the data suggest it relates to AT&T customers. For starters, email addresses ending in “att.net” accounted for 13.7 percent of all addresses in the database, with addresses from SBCGLobal.net and Bellsouth.net — both AT&T companies — making up another seven percent. In contrast, Gmail users made up more than 30 percent of the data set, with Yahoo addresses accounting for 24 percent. More than 10,000 entries in the database list “none@att.com” in the email field.

Hold Security found these email domains account for 87% of all domains in the data set. Nearly 21% belonged to AT&T customers.

Holden’s team also examined the number of email records that included an alias in the username portion of the email, and found 293 email addresses with plus addressing. Of those, 232 included an alias that indicated the customer had signed up at some AT&T property; 190 of the aliased email addresses were “+att@”; 42 were “+uverse@,” an oddly specific reference to an AT&T entity that included broadband Internet. In September 2016, AT&T rebranded U-verse as AT&T Internet.

According to its website, AT&T Internet is offered in 21 states, including Alabama, Arkansas, California, Florida, Georgia, Indiana, Kansas, Kentucky, Louisiana, Michigan, Missouri, Nevada, North Carolina, Ohio, Oklahoma, Tennessee, Texas and Wisconsin. Nearly all of the records in the database that contain a state designation corresponded to those 21 states; all other states made up just 1.64 percent of the records, Hold Security found.

Image: Hold Security.

The vast majority of records in this database belong to consumers, but almost 13,000 of the entries are for corporate entities. Holden said 387 of those corporate names started with “ATT,” with various entries like “ATT PVT XLOW” appearing 81 times. And most of the addresses for these entities are AT&T corporate offices.

How old is this data? One clue may be in the dates of birth exposed in this database. There are very few records in this file with dates of birth after 2000.

“Based on these statistics, we see that the last significant number of subscribers born in March of 2000,” Holden told KrebsOnSecurity, noting that AT&T requires new account holders to be 18 years of age or older. “Therefore, it makes sense that the dataset was likely created close to March of 2018.”

There was also this anomaly: Holden said one of his analysts is an AT&T customer with a 13-letter last name, and that her AT&T bill has always had the same unique misspelling of her surname (they added yet another letter). He said the analyst’s name is identically misspelled in this database.

KrebsOnSecurity shared the large data set with AT&T, as well as Hold Security’s analysis of it. AT&T ultimately declined to say whether all of the people in the database are or were at some point AT&T customers. The company said the data appears to be several years old, and that “it’s not immediately possible to determine the percentage that may be customers.”

“This information does not appear to have come from our systems,” AT&T said in a written statement. “It may be tied to a previous data incident at another company. It is unfortunate that data can continue to surface over several years on the dark web. However, customers often receive notices after such incidents, and advice for ID theft is consistent and can be found online.”

The company declined to elaborate on what they meant by “a previous data incident at another company.”

But it seems likely that this database is related to one that went up for sale on a hacker forum on August 19, 2021. That auction ran with the title “AT&T Database +70M (SSN/DOB),” and was offered by ShinyHunters, a well-known threat actor with a long history of compromising websites and developer repositories to steal credentials or API keys.

Image: BleepingComputer

ShinyHunters established the starting price for the auction at $200,000, but set the “flash” or “buy it now” price at $1 million. The auction also included a small sampling of the stolen information, but that sample is no longer available. The hacker forum where the ShinyHunters sales thread existed was seized by the FBI in April, and its alleged administrator arrested.

But cached copies of the auction, as recorded by cyber intelligence firm Intel 471, show ShinyHunters received bids of up to $230,000 for the entire database before they suspended the sale.

“This thread has been deleted several times,” ShinyHunters wrote in their auction discussion on Sept. 6, 2021. “Therefore, the auction is suspended. AT&T will be available on WHM as soon as they accept new vendors.”

The WHM initialism was a reference to the White House Market, a dark web marketplace that shut down in October 2021.

“In many cases, when a database is not sold, ShinyHunters will release it for free on hacker forums,” wrote BleepingComputer’s Lawrence Abrams, who broke the news of the auction last year and confronted AT&T about the hackers’ claims.

AT&T gave Abrams a similar statement, saying the data didn’t come from their systems.

“When asked whether the data may have come from a third-party partner, AT&T chose not to speculate,” Abrams wrote. “‘Given this information did not come from us, we can’t speculate on where it came from or whether it is valid,'” AT&T told BleepingComputer.

Asked to respond to AT&T’s denial, ShinyHunters told BleepingComputer at the time, “I don’t care if they don’t admit. I’m just selling.”

On June 1, 2022, a 21-year-old Frenchman was arrested in Morocco for allegedly being a member of ShinyHunters. Databreaches.net reports the defendant was arrested on an Interpol “Red Notice” at the request of a U.S. federal prosecutor from Washington state.

Databreaches.net suggests the warrant could be tied to a ShinyHunters theft in May 2020, when the group announced they had exfiltrated 500 GB of Microsoft’s source code from Microsoft’s private GitHub repositories.

“Researchers assess that Shiny Hunters gained access to roughly 1,200 private repositories around March 28, 2020, which have since been secured,” reads a May 2020 alert posted by the New Jersey Cybersecurity & Communications Integration Cell, a component within the New Jersey Office of Homeland Security and Preparedness.

“Though the breach was largely dismissed as insignificant, some images of the directory listing appear to contain source code for Azure, Office, and some Windows runtimes, and concerns have been raised regarding access to private API keys or passwords that may have been mistakenly included in some private repositories,” the alert continues. “Additionally, Shiny Hunters is flooding dark web marketplaces with breached databases.”

Last month, T-Mobile agreed to pay $350 million to settle a consolidated class action lawsuit over a breach in 2021 that affected 40 million current and former customers. The breach came to light on Aug. 16, 2021, when someone starting selling tens of millions of SSN/DOB records from T-Mobile on the same hacker forum where the ShinyHunters would post their auction for the claimed AT&T database just three days later.

T-Mobile has not disclosed many details about the “how” of last year’s breach, but it said the intruder(s) “leveraged their knowledge of technical systems, along with specialized tools and capabilities, to gain access to our testing environments and then used brute force attacks and other methods to make their way into other IT servers that included customer data.”

A sales thread tied to the stolen T-Mobile customer data.

Single-Core CPU Cracked Post-Quantum Encryption Candidate Algorithm in Just an Hour

By Ravie Lakshmanan
A late-stage candidate encryption algorithm that was meant to withstand decryption by powerful quantum computers in the future has been trivially cracked by using a computer running Intel Xeon CPU in an hour's time. The algorithm in question is SIKE — short for Supersingular Isogeny Key Encapsulation — which made it to the fourth round of the Post-Quantum Cryptography (PQC) standardization

An Easier Way to Keep Old Python Code Healthy and Secure

By The Hacker News
Python has its pros and cons, but it's nonetheless used extensively. For example, Python is frequently used in data crunching tasks even when there are more appropriate languages to choose from. Why? Well, Python is relatively easy to learn. Someone with a science background can pick up Python much more quickly than, say, C. However, Python's inherent approachability also creates a couple of

New Air-Gap Attack Uses SATA Cable as an Antenna to Transfer Radio Signals

By Ravie Lakshmanan
A new method devised to leak information and jump over air-gaps takes advantage of Serial Advanced Technology Attachment (SATA) or Serial ATA cables as a communication medium, adding to a long list of electromagnetic, magnetic, electric, optical, and acoustic methods already demonstrated to plunder data. "Although air-gap computers have no wireless connectivity, we show that attackers can use

Instagram credentials Stealer: Disguised as Mod App

By McAfee Labs

Authored by Dexter Shin 

McAfee’s Mobile Research Team introduced a new Android malware targeting Instagram users who want to increase their followers or likes in the last post. As we researched more about this threat, we found another malware type that uses different technical methods to steal user’s credentials. The target is users who are not satisfied with the default functions provided by Instagram. Various Instagram modification application already exists for those users on the Internet. The new malware we found pretends to be a popular mod app and steals Instagram credentials. 

Behavior analysis 

Instander is one of the famous Instagram modification applications available for Android devices to help Instagram users access extra helpful features. The mod app supports uploading high-quality images and downloading posted photos and videos. 

The initial screens of this malware and Instander are similar, as shown below. 

Figure 1. Instander legitimate app(Left) and Mmalware(Right) 

Next, this malware requests an account (username or email) and password. Finally, this malware displays an error message regardless of whether the login information is correct. 

Figure 2. Malware requests account and password 

The malware steals the user’s username and password in a very unique way. The main trick is to use the Firebase API. First, the user input value is combined with l@gmail.com. This value and static password(=kamalw20051) are then sent via the Firebase API, createUserWithEmailAndPassword. And next, the password process is the same. After receiving the user’s account and password input, this malware will request it twice. 

Figure 3. Main method to use Firebase API
Figure 3. Main method to use Firebase API

Since we cannot see the dashboard of the malware author, we tested it using the same API. As a result, we checked the user input value in plain text on the dashboard. 

Figure 4. Firebase dashboard built for testing
Figure 4. Firebase dashboard built for testing

According to the Firebase document, createUserWithEmailAndPassword API is to create a new user account associated with the specified email address and password. Because the first parameter is defined as email patterns, the malware author uses the above code to create email patterns regardless of user input values. 

It is an API for creating accounts in the Firebase so that the administrator can check the account name in the Firebase dashboard. The victim’s account and password have been requested as Firebase account name, so it should be seen as plain text without hashing or masking. 

Network traffic 

As an interesting point on the network traffic of the malware, this malware communicates with the Firebase server in Protobuf format in the network. The initial configuration of this Firebase API uses the JSON format. Although the Protobuf format is readable enough, it can be assumed that this malware author intentionally attempts to obfuscate the network traffic through the additional settings. Also, the domain used for data transfer(=www.googleapis.com) is managed by Google. Because it is a domain that is too common and not dangerous, many network filtering and firewall solutions do not detect it. 

Conclusion 

As mentioned, users should always be careful about installing 3rd party apps. Aside from the types of malware we’ve introduced so far, attackers are trying to steal users’ credentials in a variety of ways. Therefore, you should employ security software on your mobile devices and always keep up to date. 

Fortunately, McAfee Mobile Security is able to detect this as Android/InstaStealer and protect you from similar threats. For more information visit  McAfee Mobile Security 

Indicators of Compromise 

SHA256: 

  • 238a040fc53ba1f27c77943be88167d23ed502495fd83f501004356efdc22a39 

The post Instagram credentials Stealer: Disguised as Mod App appeared first on McAfee Blog.

What Counts as “Good Faith Security Research?”

By BrianKrebs

The U.S. Department of Justice (DOJ) recently revised its policy on charging violations of the Computer Fraud and Abuse Act (CFAA), a 1986 law that remains the primary statute by which federal prosecutors pursue cybercrime cases. The new guidelines state that prosecutors should avoid charging security researchers who operate in “good faith” when finding and reporting vulnerabilities. But legal experts continue to advise researchers to proceed with caution, noting the new guidelines can’t be used as a defense in court, nor are they any kind of shield against civil prosecution.

In a statement about the changes, Deputy Attorney General Lisa O. Monaco said the DOJ “has never been interested in prosecuting good-faith computer security research as a crime,” and that the new guidelines “promote cybersecurity by providing clarity for good-faith security researchers who root out vulnerabilities for the common good.”

What constitutes “good faith security research?” The DOJ’s new policy (PDF) borrows language from a Library of Congress rulemaking (PDF) on the Digital Millennium Copyright Act (DMCA), a similarly controversial law that criminalizes production and dissemination of technologies or services designed to circumvent measures that control access to copyrighted works. According to the government, good faith security research means:

“…accessing a computer solely for purposes of good-faith testing, investigation, and/or correction of a security flaw or vulnerability, where such activity is carried out in a manner designed to avoid any harm to individuals or the public, and where the information derived from the activity is used primarily to promote the security or safety of the class of devices, machines, or online services to which the accessed computer belongs, or those who use such devices, machines, or online services.”

“Security research not conducted in good faith — for example, for the purpose of discovering security holes in devices, machines, or services in order to extort the owners of such devices, machines, or services — might be called ‘research,’ but is not in good faith.”

The new DOJ policy comes in response to a Supreme Court ruling last year in Van Buren v. United States (PDF), a case involving a former police sergeant in Florida who was convicted of CFAA violations after a friend paid him to use police resources to look up information on a private citizen.

But in an opinion authored by Justice Amy Coney Barrett, the Supreme Court held that the CFAA does not apply to a person who obtains electronic information that they are otherwise authorized to access and then misuses that information.

Orin Kerr, a law professor at University of California, Berkeley, said the DOJ’s updated policy was expected given the Supreme Court ruling in the Van Buren case. Kerr noted that while the new policy says one measure of “good faith” involves researchers taking steps to prevent harm to third parties, what exactly those steps might constitute is another matter.

“The DOJ is making clear they’re not going to prosecute good faith security researchers, but be really careful before you rely on that,” Kerr said. “First, because you could still get sued [civilly, by the party to whom the vulnerability is being reported], but also the line as to what is legitimate security research and what isn’t is still murky.”

Kerr said the new policy also gives CFAA defendants no additional cause for action.

“A lawyer for the defendant can make the pitch that something is good faith security research, but it’s not enforceable,” Kerr said. “Meaning, if the DOJ does bring a CFAA charge, the defendant can’t move to dismiss it on the grounds that it’s good faith security research.”

Kerr added that he can’t think of a CFAA case where this policy would have made a substantive difference.

“I don’t think the DOJ is giving up much, but there’s a lot of hacking that could be covered under good faith security research that they’re saying they won’t prosecute, and it will be interesting to see what happens there,” he said.

The new policy also clarifies other types of potential CFAA violations that are not to be charged. Most of these include violations of a technology provider’s terms of service, and here the DOJ says “violating an access restriction contained in a term of service are not themselves sufficient to warrant federal criminal charges.” Some examples include:

-Embellishing an online dating profile contrary to the terms of service of the dating website;
-Creating fictional accounts on hiring, housing, or rental websites;
-Using a pseudonym on a social networking site that prohibits them;
-Checking sports scores or paying bills at work.

ANALYSIS

Kerr’s warning about the dangers that security researchers face from civil prosecution is well-founded. KrebsOnSecurity regularly hears from security researchers seeking advice on how to handle reporting a security vulnerability or data exposure. In most of these cases, the researcher isn’t worried that the government is going to come after them: It’s that they’re going to get sued by the company responsible for the security vulnerability or data leak.

Often these conversations center around the researcher’s desire to weigh the rewards of gaining recognition for their discoveries with the risk of being targeted with costly civil lawsuits. And almost just as often, the source of the researcher’s unease is that they recognize they might have taken their discovery just a tad too far.

Here’s a common example: A researcher finds a vulnerability in a website that allows them to individually retrieve every customer record in a database. But instead of simply polling a few records that could be used as a proof-of-concept and shared with the vulnerable website, the researcher decides to download every single file on the server.

Not infrequently, there is also concern because at some point the researcher suspected that their automated activities might have actually caused stability or uptime issues with certain services they were testing. Here, the researcher is usually concerned about approaching the vulnerable website or vendor because they worry their activities may already have been identified internally as some sort of external cyberattack.

What do I take away from these conversations? Some of the most trusted and feared security researchers in the industry today gained that esteem not by constantly taking things to extremes and skirting the law, but rather by publicly exercising restraint in the use of their powers and knowledge — and by being effective at communicating their findings in a way that maximizes the help and minimizes the potential harm.

If you believe you’ve discovered a security vulnerability or data exposure, try to consider first how you might defend your actions to the vulnerable website or vendor before embarking on any automated or semi-automated activity that the organization might reasonably misconstrue as a cyberattack. In other words, try as best you can to minimize the potential harm to the vulnerable site or vendor in question, and don’t go further than you need to prove your point.

How Secure Is Video Conferencing?

By McAfee

As millions of people around the world practice social distancing and work their office jobs from home, video conferencing has quickly become the new norm. Whether you’re attending regular work meetings, partaking in a virtual happy hour with friends, or catching up with extended family across the globe, video conferencing is a convenient alternative to many of the activities we can no longer do in real life. But as the rapid adoption of video conferencing tools and apps occurs, is security falling by the wayside?

Avoid Virtual Party Crashers

One security vulnerability that has recently made headlines is the ability for uninvited attendees to bombard users’ virtual meetings. How? According to Forbes, many users have posted their meeting invite links on social media sites like Twitter. An attacker can simply click on one of these links and interrupt an important conference call or meeting with inappropriate content.  

Ensure Data is in the Right Hands

Online conferencing tools allow users to hold virtual meetings and share files via chat. But according to Security Boulevard, communicating confidential business information quickly and privately can be challenging with these tools. For example, users are not always immediately available, even when working from home. In fact, many parents are simultaneously doubling as working parents and teachers with the recent closure of schools and childcare providers. If a user needs to share private information with a coworker but they are unable to connect by video or phone, they might revert to using a messaging platform that lacks end-to-end encryptiona feature that prevents third-party recipients from seeing private messages. This could lead to leaks or unintended sharing of confidential data, whether personal or corporate. What’s more, the lack of using a secure messaging platform could present a hacker with an opportunity to breach a victim’s data or deviceDepending on the severity of this type of breach, a victim could be at risk of identity theft 

Pay Attention to Privacy Policies

With the recent surge of new video conferencing users, privacy policies have been placed under a microscope. According to WIRED, some online conferencing tools have had to update their policies to reflect the collection of user information and meeting content used for advertising or other marketing efforts. Another privacy concern was brought to light by a video conferencing tool’s attention-tracking feature. This alerts the virtual meeting host when an attendee hasn’t had the meeting window in their device foreground for 30 seconds, resulting in users feeling that their privacy has been compromised.  

How to Secure Video Conferences

As users become accustomed to working from home, video conferencing tools will continue to become a necessary avenue for virtual communication. But how can users do so while putting their online security first? Follow these tips to help ensure that your virtual meetings are safeguarded:  

Do your research

There are plenty of video conferencing tools available online. Before downloading the first one you see, do your research and check for possible security vulnerabilities around the tools. Does the video conferencing tool you’re considering use end-to-end encryption? This ensures that only meeting participants have the ability to decrypt secure meeting content. Additionally, be sure to read the privacy policies listed by the video conferencing programs to find the one that is the most secure and fits your needs.  

Make your meetings password protected

To ensure that only invited attendees can access your meeting, make sure they are password protected. For maximum safety, activate passwords for new meetings, instant meetings, personal meetings, and people joining by phone. 

Block users from taking control of the screen

To keep users (either welcome or unwelcome) from taking control of your screen while you’re video conferencing, select the option to block everyone except the host (you) from screen sharing.  

Turn on automatic updates

By turning on automatic updates, you are guaranteed to have all the latest security patches and enhancements for your video conferencing tool as soon as they become available.  

The post How Secure Is Video Conferencing? appeared first on McAfee Blog.

How To Do A Virus Scan

By McAfee

Whether you think you might have a virus on your computer or devices, or just want to keep them running smoothly, it’s easy to do a virus scan. How to check for viruses depends on the software and device you have, so we’ll go through everything you need to know to run a scan effectively and keep your computers, phones and tablets in tip-top shape.

Do You Need a Virus Scan?

First, let’s cover a few of the telltale signs your device might have a virus. Is your computer or device acting sluggish or having a hard time booting up? Have you noticed missing files or a lack of storage space? Have you noticed emails or messages sent from your account that you did not write? Perhaps you’ve noticed changes to your browser homepage or settings? Or maybe, you’re seeing unexpected pop-up windows, or experiencing crashes and other program errors. These are all examples of signs that you may have a virus, but don’t get too worried yet, because many of these issues can be resolved with a virus scan.

What Does a Virus Scan Do?

Each antivirus program works a little differently, but in general the software will look for known malware that meets a specific set of characteristics. It may also look for variants of these known threats that have a similar code base. Some antivirus software even checks for suspicious behavior. If the software comes across a dangerous program or piece of code, it removes it. In some cases, a dangerous program can be replaced with a clean one from the manufacturer.

How to Check for Viruses

The process of checking for viruses depends on the device type and its operating system. Check out these tips to help you scan your computers, phones and tablets.

On a Windows computer

If you use Windows 10, go into “Settings” and look for the “Updates & Security” tab. From there you can locate a “Scan Now” button.

Of course, many people have invested in more robust antivirus software that has a high accuracy rate and causes less drain on their system resources, such as McAfee Total Protection. To learn how to run a virus scan using your particular antivirus software, search the software’s help menu or look online for instructions.

On a Mac computer

Mac computers don’t have a built-in antivirus program, so you will have to download security software to do a virus scan. There are some free antivirus applications available online, but we recommend investing in trusted software that can protect you from a variety of threats. Downloading free software and free online virus scans can be risky, since cybercriminals know that this is a good way to spread malware.

Whichever program you choose, follow their step-by-step instructions on how to perform a virus scan, either by searching under “help” or looking it up on their website.

On smartphones and tablets

Yes, you can get a virus on your phone or tablet, although they are less common than on computers. However, the wider category of mobile malware is on the rise and your device can get infected if you download a risky app, click on an attachment in a text message, visit a dangerous webpage, or connect to another device that has malware on it.

Fortunately, you can protect your devices with mobile security software. It doesn’t usually come installed, so you will have to download an application and follow the instructions.

Because the Android platform is an open operating system, there are a number of antivirus products for Android devices, that allows you to do a virus scan.

Apple devices are a little different because they have a closed operating system that doesn’t allow third parties to see their code. Although Apple has taken other security precautions to reduce malware risks, such as only allowing the installation of apps from Apple’s official app store, these measures aren’t the same as an antivirus program.

For more robust protection on your Apple devices, you can install mobile security software to protect the private data you have stored on your phone or tablet, such as contacts, photos and messages.

All-In-One Protection:

If safeguarding all your computers and devices individually sounds overwhelming, you can opt for a comprehensive security product that protects computers, smartphones and tablets from a central control center, making virus prevention a breeze.

Why are virus scans so important?

New online threats emerge every day, putting our personal information, money and devices at risk. In the first quarter of 2019 alone McAfee detected 504 new threats per minute, as cybercriminals employed new tactics. That’s why it is essential to stay ahead of these threats by using security software that is constantly monitoring and checking for new known threats, while safeguarding all of your sensitive information. Virus scans are an essential part of this process when it comes to identifying and removing dangerous code.

How often should you run a virus scan?

Most antivirus products are regularly scanning your computer or device in the background, so you will only need to start a manual scan if you notice something suspicious, like crashes or excessive pop-ups. You can also program regular scans on your schedule.

Preventing Viruses

Of course, the best protection is to avoid getting infected in the first place. Here are a few smart tips to sidestep viruses and other malware:

  • Learn how to surf safely so you can avoid risky websites, links and messages. This will go a long way in keeping you virus-free.
  • Never click on spammy emails or text messages. These include unsolicited advertisements and messages from people or companies you don’t know.
  • Keep the software on your computers and devices up to date. This way you are protected from known threats, such as viruses and other types of malware.
  • Invest in comprehensive security software that can protect all of your devices, such as McAfee LiveSafe.
  • Stay informed on the latest threats, so you know what to look out for. The more you know about the latest scams, the easier they will be to spot and avoid.

The post How To Do A Virus Scan appeared first on McAfee Blog.

High-Severity Bug Reported in Google's OAuth Client Library for Java

By Ravie Lakshmanan
Google last month addressed a high-severity flaw in its OAuth client library for Java that could be abused by a malicious actor with a compromised token to deploy arbitrary payloads. Tracked as CVE-2021-22573, the vulnerability is rated 8.7 out of 10 for severity and relates to an authentication bypass in the library that stems from an improper verification of the cryptographic signature.

5 Tips For Creating Bulletproof Passwords

By McAfee

While biometric tools like facial ID and fingerprints have become more common when it comes to securing our data and devices, strong passwords still play an essential part in safeguarding our digital lives.

This can be frustrating at times, since many of us have more accounts and passwords than we can possibly remember. This can lead us to dangerous password practices, such as choosing short and familiar passwords, and repeating them across numerous accounts. But password safety doesn’t have to be so hard. Here are some essential tips for creating bulletproof passwords.

Remember, simple is not safe

Every year surveys find that the most popular passwords are as simple as  “1234567” and just “password.” This is great news for the cybercrooks, but really bad news for the safety of our personal and financial information.

When it comes to creating strong passwords, length and complexity matter because it makes them harder to guess, and harder to crack if the cybercriminal is using an algorithm to quickly process combinations. The alarming truth is that passwords that are just 7 characters long take less than a third of a second to crack using these “brute force attack” algorithms.

Tricks:

  • Make sure that your passwords are at least 12 characters long and include numbers, symbols, and upper and lowercase letters.
  • Try substituting numbers and symbols for letters, such as zero for “O”, or @ for “A”.
  • If you’re using internet-connected devices, like IP cameras and interactive speakers, make sure to change the default passwords to something unique, since hackers often know the manufacturer’s default settings.

Keep it impersonal

Passwords that include bits of personal information, such as your name, address, or pet’s name, make them easier to guess. This is especially true when we share a lot of personal information online. But you can use personal preferences that aren’t well known to create strong passphrases.

Tricks:

  • Try making your password a phrase, with random numbers and characters. For instance, if you love crime novels you might pick the phrase: ILoveBooksOnCrime
    Then you would substitute some letters for numbers and characters, and put a portion in all caps to make it even stronger, such as: 1L0VEBook$oNcRIM3!
  • If you do need to use personal information when setting up security questions, choose answers that are not easy to find online.
  • Keep all your passwords and passphrases private.

Never reuse passwords

If you reuse passwords and someone guesses a password for one account, they can potentially use it to get into others. This practice has gotten even riskier over the last several years, due to the high number of corporate data breaches. With just one hack, cybercriminals can get their hands on thousands of passwords, which they can then use to try to access multiple accounts.

Tricks:

  • Use unique passwords for each one of your accounts, even if it’s for an account that doesn’t hold a lot of personal information. These too can be compromised, and if you use the same password for more sensitive accounts, they too are at risk.
  • If a website or monitoring service you use warns you that your details may have been exposed, change your password immediately.

Employ a password manager

If just the thought of creating and managing complex passwords has you overwhelmed, outsource the work to a password manager! These are software programs that can create random and complex passwords for each of your accounts, and store them securely. This means you don’t have to remember your passwords – you can simply rely on the password manager to enter them when needed.

Tricks:

  • Look for security software that includes a password manager
  • Make sure your password manager uses multi-factor authentication, meaning it uses multiple pieces of information to identify you, such as facial recognition, a fingerprint, and a password.

Boost your overall security

Now that you’ve made sure that your passwords are bulletproof, make sure you have comprehensive security software that can protect you from a wide variety of threats.

Tricks:

  • Keep you software up-to-date and consider using a web advisor that protects you from accidentally typing passwords into phishing sites.

The post 5 Tips For Creating Bulletproof Passwords appeared first on McAfee Blog.

New Hacking Campaign Targeting Ukrainian Government with IcedID Malware

By Ravie Lakshmanan
The Computer Emergency Response Team of Ukraine (CERT-UA) has warned of a new wave of social engineering campaigns delivering IcedID malware and leveraging Zimbra exploits with the goal of stealing sensitive information. Attributing the IcedID phishing attacks to a threat cluster named UAC-0041, the agency said the infection sequence begins with an email containing a Microsoft Excel document (

Smart Tips for Staying Safer Online

By McAfee

The recent WannaCry ransomware attack that infected more than 250,000 computers worldwide was a good reminder to everyone about staying vigilant when it comes to internet safety.

After all, many of us stay connected most of the time, whether it’s on our laptops or mobile devices, giving cybercriminals a wide range of opportunities to go after our personal and financial information, as well as our privacy.

The good news is that safeguarding your internet security, and preventing an attack like WannaCry, can be as simple as keeping your software up-to-date, and taking other preventative measures. The key is knowing which threats to look out for, and when you are taking potential risks.

Let’s start by talking about our mobile devices. Although many of us have been taught to look out for viruses and other threats on our computers, we don’t always realize that our mobile devices are just as vulnerable as our desktops.

The truth is dangerous links and downloads can be easily accessed using mobile browsers and email. And, our devices can open us up to new threats like malicious apps or text messages, designed to steal your information.

And if you think you’re protected from many online threats because you are an Apple user, think again. McAfee Labs found in its latest Quarterly Threat Report that malware exploiting the Mac operating system has grown exponentially.

Another instance where we often don’t realize we’re at risk is when we use technology while travelling or away from home. Connecting to public Wi-Fi networks can be dangerous because many of these networks do not take the necessary steps to protect your data from being accessed by cybercrooks. It’s just as risky to use public or shared computers since the bad guys will sometimes infect them with malware or spyware designed to steal your information.

Our heavy use of social media is another area where we face new threats. Although these sites are made for sharing, we tend to share too much of our private information, opening us up to identity theft, or even harassment. That’s why we need to safely guard information such as our home address, employer, phone number, and email. It’s also wise to change your social media privacy settings to “friends only.” When we open our networks up to people who we don’t know in real life, we also open the door to potential scammers.

These scammers love to distribute phishing attacks on social media and via email and text. Their goal is to trick you into revealing personal or financial information. Take, for instance, the recent “Google Docs” attack, in which scammers sent out fake emails that appeared to come from a trusted source, asking recipients to click on a link to open a Google document, with the hopes of gaining access to their email login and contact information.

Account login information is highly valuable to scammers, since it can potentially allow them to login into or guess your banking passwords, and other crucial financial or identity information. This is a good reason to opt for the highest security settings on all your accounts, such as multi-factor authentication. This security measure asks you to provide an additional piece of information other than your password to verify your identity, such as entering a unique code that is sent to your mobile phone.

There are a lot of threats that we all need to be aware of, but by taking basic precautions and staying vigilant about what you share online you will be much better protected from cybercrime.

Tips to keep you safe:

  • Keep on top of the latest threats so you know what to look out for.
  • Make sure you use comprehensive security software that protects both your computers and mobile devices, and keep the software up-to-date.
  • Turn on automatic updates on all your devices so your operating systems always have the latest security fixes.
  • Create unique, complex passwords using a combination of upper and lower case letters, numbers and symbols for all your critical accounts.
  • Turn on multi-factor authentication when available.
  • Never click on attachments or links sent by someone you don’t know. These often lead to malware or phishing scams.
  • Be careful when downloading mobile apps. Only download apps from an official app store, and read other users’ reviews first to make sure the app is safe.
  • Backup all your data on a regular basis, in case you need to wipe your device clean, or as a safeguard in response to ransomware. This way you can restore all of your information.
  • Be careful when posting on social networks. Never share key identity information, and select the highest security settings.
  • When away from home, avoid using public Wi-Fi and stick to websites that start with “HTTPS” instead of just “HTTP”, since they use extra security to protect your information. If you must use an unsecured network, protect your data by installing a personal VPN, which links you to a secure network over the internet.

Looking for more mobile security tips and trends? Be sure to follow @McAfee Home on Twitter, and like us on Facebook.

The post Smart Tips for Staying Safer Online appeared first on McAfee Blog.

Together, We Block and Tackle to Give You Peace of Mind

By Baker Nanduru

As a leader in cybersecurity, we at McAfee understand that every aspect of your digital life has potential weak spots that could make you vulnerable to threats and attacks. By incorporating security into everything you do online, you’re better protected from potential threats. To mount your offense, we’ve enlisted a team of partners that puts your security needs first, seamlessly blending our security with their services so you can live a confident life online. We bring our McAfee security teams together with industry players like PC & smartphone manufacturers, software & operating system developers, and more to make sure we can keep scoring security wins for you.

PC Partners Sweat the Security So You Don’t Have To

When was the last time you worried about security while you were shopping for a new PC? You were probably checking out the specs, price, and making sure it had all the capabilities you needed for working remotely, distance learning, and maybe a little gaming. And that’s all in addition to the day-to-day productivity, banking, and browsing you do. Like a strong defensive line, HP, Dell, Lenovo, and ASUS work closely with us to make sure that your personal data and devices are secure, especially as you spend more time online than ever before. That’s why so many new PCs are preloaded with a free McAfee® LiveSafe trial to provide integrated protection from malware, viruses, and spyware from day 1 with minimal impact on performance.

McAfee protection goes beyond just antivirus. We help you keep apps and Windows up to date and patched against vulnerabilities, block intruders with our firewall, and help you clean up cookies and temporary files to minimize the digital footprint on your PC.

We build our security directly into the devices consumers rely on for everything from remote yoga to distance learning, so that they know they’ll be safer online, regardless of what their new normal looks like.

Our Defense Is More Mobile Than Ever

Part of a good defense is understanding how the game has changed. We recognize that our customers are using multiple devices to connect online these days. In fact, their primary device may not even be a computer. That’s why we work with mobile providers to ensure customers like you have access to our comprehensive multidevice security options. Devices like mobile phones and tablets allow users to access social media, stream content, and even bank on their terms. For that reason, our mobile protection includes features like VPN, so that you can connect any time, any place safely and use your apps securely.

Retail Partners Make Plug and Play Even Easier

Our online and brick & mortar retail partners are also irreplaceable on the field. We understand that shopping for security can be complicated – even intimidating – when faced with a wall of choices. Whether you’re in-store or browsing online, we’ll work together to address your security needs so that your devices and personal data are protected with the solution that works best for you. Many of our retailers offer additional installation and upgrade support so you can have one less thing to worry about.

Software Partners Help Us Mount a Better Defense

Your web browser is more than a shortcut to the best chocolate chip cookie recipe; it connects you to endless content, information, and communication. Equally important is your operating system, the backbone that powers every app you install, every preference you save, and every vacation destination wallpaper that cycles through. We partner closely with web browsers, operating systems, and other software developers to ensure that our opponents can’t find holes in our defense. Everything that seamlessly works in the background stays that way, helping stop threats and intruders dead in their tracks. Whether it’s routine software updates or color-coded icons that help differentiate safe websites from phishing scams, we’re calling safety plays that keep our customers in the game.

Our Security Sets Teams Up for Success

At McAfee, we work tirelessly to do what we do best: blocking the threats you see, and even the ones you don’t. These days your “digital life” blurs the lines between security, identity, and privacy. So, we go into the dark web to hunt down leaked personal info stolen by identity thieves. We include Secure VPN in all our suites to give you privacy online. It’s these capabilities that strengthen both the offense and defense in our starting lineup of security suites like McAfee® Total Protection and McAfee® LiveSafe.

In short, your protection goes from a few reminders to scan your device to a team of experts helping you stay primed for the playoffs. It’s a roster that includes technology and humans solely devoted to staying ahead of the bad guys, from McAfee Advanced Threat Research (ATR) investigating and reporting like to artificial intelligence and machine learning that strengthens with every threat from every device. In fact, in just the first three months of this year, our labs detected over six threats per second!

Cybercriminals may be taking advantage of this current moment, but together, we can ensure our defense holds strong. After all, defense wins championships.

Stay Updated

To stay updated on all things McAfee  and on top of the latest consumer and mobile security threats, follow @McAfee_Home  on Twitter, listen to our podcast Hackable?, and ‘Like’ us on Facebook.

The post Together, We Block and Tackle to Give You Peace of Mind appeared first on McAfee Blogs.

From Bugs to Zoombombing: How to Stay Safe in Online Meetings

By Trend Micro

The COVID-19 pandemic, along with social distancing, has done many things to alter our lives. But in one respect it has merely accelerated a process begun many years ago. We were all spending more and more time online before the virus struck. But now, forced to work, study and socialize at home, the online digital world has become absolutely essential to our communications — and video conferencing apps have become our “face-to-face” window on the world.

The problem is that as users flock to these services, the bad guys are also lying in wait — to disrupt or eavesdrop on our chats, spread malware, and steal our data. Zoom’s problems have perhaps been the most widely publicized, because of its quickly rising popularity, but it’s not the only platform whose users have been potentially at risk. Cisco’s WebEx and Microsoft Teams have also had issues; while other platforms, such as Houseparty, are intrinsically less secure (almost by design for their target audience, as the name suggests).

Let’s take a look at some of the key threats out there and how you can stay safe while video conferencing.

What are the risks?

Depending on the platform (designed for work or play) and the use case (business or personal), there are various opportunities for the online attacker to join and disrupt or eavesdrop on video conferencing calls. The latter is especially dangerous if you’re discussing sensitive business information.

Malicious hackers may also look to deliver malware via chats or shared files to take control of your computer, or to steal your passwords and sensitive personal and financial information. In a business context, they could even try to hijack your video conferencing account to impersonate you, in a bid to steal info from or defraud your colleagues or company.

The bad guys may also be able to take advantage of the fact that your home PCs and devices are less well-secured than those at work or school—and that you may be more distracted at home and less alert to potential threats.

To accomplish their goals, malicious hackers can leverage various techniques at their disposal. These can include:

  • Exploiting vulnerabilities in the video conferencing software, particularly when it hasn’t been updated to fend off the latest threats
  • Stealing your log-ins/meeting ID via malware or phishing attacks; or by obtaining a meeting ID or password shared on social media
  • Hiding malware in legitimate-looking video apps, links and files
  • Theft of sensitive data from meeting recordings stored locally or in the cloud.

Zooming in on trouble

Zoom has in many ways become the victim of its own success. With daily meeting participants soaring from 10 million in December last year to 200 million by March 2020, all eyes have been focused on the platform. Unfortunately, that also includes hackers. Zoom has been hit by a number of security and privacy issues over the past several months, which include “Zoombombing” (meetings disrupted by uninvited guests), misleading encryption claims, a waiting room vulnerability, credential theft and data collection leaks, and fake Zoom installers. To be fair to Zoom, it has responded quickly to these issues, realigning its development priorities to fix the security and privacy issues discovered by its intensive use.

And Zoom isn’t alone. Earlier in the year, Cisco Systems had its own problem with WebEx, its widely-used enterprise video conferencing system, when it discovered a flaw in the platform that could allow a remote, unauthenticated attacker to enter a password-protected video conferencing meeting. All an attacker needed was the meeting ID and a WebEx mobile app for iOS or Android, and they could have barged in on a meeting, no authentication necessary. Cisco quickly moved to fix the high-severity vulnerability, but other flaws (also now fixed) have cropped up in WebEx’s history, including one that could enable a remote attacker to send a forged request to the system’s server.

More recently, Microsoft Teams joined the ranks of leading business videoconferencing platforms with potentially deadly vulnerabilities. On April 27 it surfaced that for at least three weeks (from the end of February till the middle of March), a malicious GIF could have stolen user data from Teams accounts, possibly across an entire company. The vulnerability was patched on April 20—but it’s a reminder to potential video conferencing users that even leading systems such as Zoom, WebEx, and Teams aren’t fool-proof and require periodic vulnerability and security fixes to keep them safe and secure. This is compounded during the COVID-19 pandemic when workers are working from home and connecting to their company’s network and systems via possibly unsecure home networks and devices.

Video conferencing alternatives

So how do you choose the best, most secure, video conferencing software for your work-at-home needs? There are many solutions on the market today. In fact, the choice can be dizzying. Some simply enable video or audio meetings/calls, while others also allow for sharing and saving of documents and notes. Some are only appropriate for one-on-one connections or small groups, while others can scale to thousands.

In short, you’ll need to choose the video conferencing solution most appropriate to your needs, while checking if it meets a minimum set of security standards for working at home. This set of criteria should include end-to-end encryption, automatic and frequent security updates, the use of auto-generated meeting IDs and strong access controls, a program for managing vulnerabilities, and last but not least, good privacy practices by the company.

Some video conferencing options alongside Zoom, WebEx, and Teams include:

  • Signal which is end-to-end encrypted and highly secure, but only supports one-to-one calls.
  • FaceTime, Apple’s video chat tool, is easy-to-use and end-to-end encrypted, but is only available to Mac and iOS users.
  • Jitsi Meet is a free, open-source video conferencing app that works on Android, iOS, and desktop devices, with no limit on participants beyond your bandwidth.
  • Skype Meet Now is Microsoft’s free, popular conferencing tool for up to 50 users that can be used without an account, (in contrast to Teams, which is a paid, more business-focused platform for Office 365 users).
  • Google Duo is a free option for video calls only, while the firm’s Hangouts platform can also be used for messaging. Hangouts Meet is a more business-focused paid version.
  • Doxy.me is a well-known telemedicine platform used by doctors and therapists that works through your browser—so it’s up to you to keep your browser updated and to ensure the appropriate security and privacy settings are in place. Secure medical consultation with your healthcare provider is of particular concern during the shelter- and work-from-home quarantine.

How do I stay safe?

Whatever video conferencing platform you use, it’s important to bear in mind that cyber-criminals will always be looking to take advantage of any security gaps they can find — in the tool itself or your use of it. So how do you secure your video conferencing apps? Some tips listed here are Zoom-specific, but consider their equivalents in other platforms as general best-practice tips. Depending on the use case, you might choose to not enable some of the options here.

  • Check for end-to-end encryption before getting onboard with the app. This includes encryption for data at rest.
  • Ensure that you generate one-off meeting IDs and passwords automatically for recurring meetings (Zoom).
  • Don’t share any meeting IDs online.
  • Use the “waiting room” feature in Zoom (now fixed), so the host can only allow attendees from a pre-assigned list.
  • Lock the meeting once it’s started to stop anyone new from joining.
  • Allow the host to put attendees on hold, temporarily removing them from a meeting if necessary.
  • Play a sound when someone enters or leaves the room.
  • Set screen-sharing to “host only” to stop uninvited guests from sharing disruptive content.
  • Disable “file transfers” to block possible malware.
  • Keep your systems patched and up-to-date so there are no bugs that hackers can target.
  • Only download conferencing apps from official iOS/Android stores and manufacturer websites.
  • Never click on links or open attachments in unsolicited mail.
  • Check the settings in your video conferencing account. Switch off camera access if you don’t want to appear on-screen.
  • Use a password manager for video conferencing app log-ins.
  • Enhance passwords with two-factor authentication (2FA) or Single-Sign-On (SSO) to protect access, if available.
  • Install anti-malware software from a reputable vendor on all devices and PCs. And implement a network security solution if you can.

How Trend Micro can help

Fortunately, Trend Micro has a range of capabilities that can support your efforts to stay safe while using video conferencing services.

Trend Micro Home Network Security (HNS) protects every device in your home connected to the internet. That means it will protect you from malicious links and attachments in phishing emails spoofed to appear as if sent from video conferencing firms, as well as from those sent by hackers that may have covertly entered a meeting. Its Vulnerability Check can identify any vulnerabilities in your home devices and PCs, including work laptops, and its Remote Access Protection can reduce the risk of tech support scams and unwanted remote connections to your device. Finally, it allows parents to control their kids’ usage of video conferencing applications, to limit their exposure.

Trend Micro Security also offers protection against email, file, and web threats on your devices. Note too, that Password Manager is automatically installed with Maximum Security to help users create unique, strong passwords for each application/website they use, including video conferencing sites.

Finally, Trend Micro WiFi Protection (multi-platform) / VPN Proxy One (Mac and iOS) offer VPN connections from your home to the internet, creating secure encrypted tunnels for traffic to flow down. The VPN apps work on both Wi-Fi and Ethernet connections. This could be useful for users concerned their video conferencing app isn’t end-to-end encrypted, or for those wishing to protect their identity and personal information when interacting on these apps.

The post From Bugs to Zoombombing: How to Stay Safe in Online Meetings appeared first on .

The Everyday Cyber Threat Landscape: Trends from 2019 to 2020

By Trend Micro

The past 12 months have been another bumper year for cybercrime affecting everyday users of digital technology. Trend Micro blocked more than 26.8 billion of these threats in the first half of 2019 alone. The bad news is that there are many more out there waiting to steal your personal data for identity fraud, access your bank account, hold your computer to ransom, or extort you in other ways.

To help you stay safe over the coming year we’ve listed some of the biggest threats from 2019 and some trends to keep an eye on as we hit the new decade. As you’ll see, many of the most dangerous attacks will look a lot like the ones we warned about in 2019.

As we enter 2020 the same rules apply: stay alert, stay sceptical, and stay safe by staying protected.

Top five threats of 2019

Cybercrime is a chaotic, volatile world. So to make sense of the madness of the past 12 months, we’ve broken down the main type of threats consumers encountered into five key areas:

Home network threats: Our homes are increasingly powered by online technologies. Over two-thirds (69%) of US households now own at least one smart home device: everything from voice assistant-powered smart speakers to home security systems and connected baby monitors. But gaps in protection can expose them to hackers. As the gateway to our home networks, routers are particularly at risk. It’s a concern that 83% are vulnerable to attack. There were an estimated 105m smart home attacks in the first half of 2019 alone.

Endpoint threats: These are attacks aimed squarely at you the user, usually via the email channel. Trend Micro detected and blocked more than 26 billion such email threats in the first half of 2019, nearly 91% of the total number of cyber-threats. These included phishing attacks designed to trick you into clicking on a malicious link to steal your personal data and log-ins or begin a ransomware download. Or they could be designed to con you into handing over your personal details, by taking you to legit-looking but spoofed sites. Endpoint threats sometimes include social media phishing messages or even legitimate websites that have been booby-trapped with malware.

Mobile security threats: Hackers are also targeting our smartphones and tablets with greater gusto. Malware is often unwittingly downloaded by users, since it’s hidden in normal-looking Android apps, like the Agent Smith adware that infected over 25 million handsets globally this year. Users are also extra-exposed to social media attacks and those leveraging unsecured public Wi-Fi when using their devices. Once again, the end goal for the hackers is to make money: either by stealing your personal data and log-ins; flooding your screen with adverts; downloading ransomware; or forcing your device to contact expensive premium rate phone numbers that they own.

Online accounts under attack: Increasingly, hackers are after our log-ins: the virtual keys that unlock our digital lives. From Netflix to Uber, webmail to online banking, access to these accounts can be sold on the dark web or they can be raided for our personal identity data. Individual phishing attacks is one way to get these log-ins. But an increasingly popular method in 2019 was to use automated tools that try tens of thousands of previously breached log-ins to see if any of them work on your accounts. From November 2017 through the end of March 2019, over 55 billion such attacks were detected.

Breaches are everywhere: The raw materials needed to unlock your online accounts and help scammers commit identity fraud are stored by the organizations you interact with online. Unfortunately, these companies continued to be successfully targeted by data thieves in 2019. As of November 2019, there were over 1,200 recorded breaches in the US, exposing more than 163 million customer records. Even worse, hackers are now stealing card data direct from the websites you shop with as they are entered in, via “digital skimming” malware.

What to look out for in 2020

Smart homes under siege: As we invest more money in smart gadgets for our families, expect hackers to double down on network attacks. There’s a rich bounty for those that do: they can use an exposed smart endpoint as a means to sneak into your network and rifle through your personal data and online accounts. Or they could monitor your house via hacked security cameras to understand the best time to break in. Your hacked devices could even be recruited into botnets to help the bad guys attack others.

Social engineering online and by phone: Attacks that target user credulity are some of the most successful. Expect them to continue in 2020: both traditional phishing emails and a growing number of phone-based scams. Americans are bombarded by 200 million automated “robocalls” each day, 30% of which are potentially fraudulent. Sometimes phone fraud can shift quickly online; for example, tech support scams that convince the user there’s something wrong with their PC. Social engineering can also be used to extort money, such as in sextortion scams designed to persuade victims that the hacker has and is about to release a webcam image of them in a “compromising position.” Trend Micro detected a 319% increase in these attacks from 2H 2018 to the first half of 2019.

Threats on the move: Look out for more mobile threats in 2020. Many of these will come from unsecured public Wi-Fi which can let hackers eavesdrop on your web sessions and steal identity data and log-ins. Even public charging points can be loaded with malware, something LA County recently warned about. This comes on top of the escalating threat from malicious mobile apps.

All online accounts are fair game: Be warned that almost any online account you open and store personal data in today will be a target for hackers tomorrow. For 2020, this means of course you will need to be extra careful about online banking. But also watch out for attacks on gaming accounts.  Not only your personal identity data and log-ins but also lucrative in-game tokens will become highly sought after. Twelve billion of those recorded 55 billion credential stuffing attacks were directed at the gaming industry.

Worms make a comeback: Computer worms are dangerous because they self-replicate, allowing hackers to spread attacks without user interaction. This is what happened with the WannaCry ransomware attacks of 2017. A Microsoft flaw known as Bluekeep offers a new opportunity to cause havoc in 2020. There may be more out there.

How to stay safe

Given the sheer range of online threats facing computer users in 2020, you’ll need to cover all bases to keep your systems and data safe. That means:

Protecting the smart home with network monitoring solutions, regular checks for security updates on gadgets/router, changing the factory default logins to strong passwords, and putting all gadgets onto a guest network.

Tackling data-stealing malware, ransomware and other worm-style threats with strong AV from a reputable vendor, regular patching of your PC/mobile device, and strong password security (as given below).

Staying safe on the move by always using VPNs with public Wi-Fi, installing AV on your device, only frequenting official app stores, and ensuring you’re always on the latest device OS version. And steer clear of public USB charging points.

Keeping accounts secure by using a password manager for creating and storing strong passwords and/or switching on two-factor authentication where available. This will stop credential stuffing in its tracks and mitigate the impact of a third-party breach of your log-ins. Also, never log-in to webmail or other accounts on shared computers.

Taking on social engineering by never clicking on links or opening attachments in unsolicited emails, texts or social media messages and never giving out personal info over the phone.

How Trend Micro can help

Fortunately, Trend Micro fully understands the multiple sources for modern threats. It offers a comprehensive range of security products to protect all aspects of your digital life — from your smart home, home PCs, and mobile devices to online accounts including email and social networks, as well as when browsing the web itself.

Trend Micro Home Network Security: Provides protection against network intrusions, router hacks, web threats, dangerous file downloads and identity theft for every device connected to the home network.

Trend Micro Security: Protects your PCs and Macs against web threats, phishing, social network threats, data theft, online banking threats, digital skimmers, ransomware and other malware. Also guards against over-sharing on social media.

Trend Micro Mobile Security: Protects against malicious app downloads, ransomware, dangerous websites, and unsafe Wi-Fi networks.

Trend Micro Password Manager: Provides a secure place to store, manage and update your passwords. It remembers your log-ins, enabling you to create long, secure and unique credentials for each site/app you need to sign-in to.

Trend Micro WiFi Protection: Protects you on unsecured public WiFi by providing a virtual private network (VPN) that encrypts your traffic and ensures protection against man-in-the-middle (MITM) attacks.

Trend Micro ID Security (Android, iOS): Monitors underground cybercrime sites to securely check if your personal information is being traded by hackers on the Dark Web and sends you immediate alerts if so.

The post The Everyday Cyber Threat Landscape: Trends from 2019 to 2020 appeared first on .

❌