FreshRSS

🔒
❌ About FreshRSS
There are new available articles, click to refresh the page.
Before yesterdayYour RSS feeds

Building a More Secure Routing System: Verisign’s Path to RPKI

By Verisign
abstract-technology-background

This blog was co-authored by Verisign Distinguished Engineer Mike Hollyman and Verisign Director – Engineering Hasan Siddique. It is based on a lightning talk they gave at NANOG 87 in February 2023, the slides from which are available on the NANOG website.

At Verisign, we believe that continuous improvements to the safety and security of the global routing system are critical for the reliability of the internet. As such, we’ve recently embarked on a path to implement Resource Public Key Infrastructure (RPKI) within our technology ecosystem as a step toward building a more secure routing system. In this blog, we share our ongoing journey toward RPKI adoption and the lessons we’ve learned as an operator of critical internet infrastructure.

While RPKI is not a silver bullet for securing internet routing, practical adoption of RPKI can deliver significant benefits. This will be a journey of deliberate, measured, and incremental steps towards a larger goal, but we believe the end result will be more than worth it.

Why RPKI and why now?

Under the Border Gateway Protocol (BGP) – the internet’s de-facto inter-domain routing protocol for the last three decades – local routing policies decide where and how internet traffic flows, but each network independently applies its own policies on what actions it takes, if any, with data that connects through its network. For years, “routing by rumor” served the internet well; however, our growing dependence upon the global internet for sensitive and critical communications means that internet infrastructure merits a more robust approach for protecting routing information. Preventing route leaks, mis-originations, and hijacks is a first step.

Verisign was one of the first organizations to join the Mutually Agreed Norms for Routing Security (MANRS) Network Operator Program in 2017. Ever since the establishment of the program, facilitating routing information – via an Internet Routing Registry (IRR) or RPKI – has been one of the key “actions” of the MANRS program. Verisign has always been fully supportive of MANRS and its efforts to promote a culture of collective responsibility, collaboration, and coordination among network peers in the global internet routing system.

Just as RPKI creates new protections, it also brings new challenges. Mindful of those challenges, but committed to our mission of upholding the security, stability, and resiliency of the internet, Verisign is heading toward RPKI adoption.

Adopting RPKI ROV and External Dependencies

In his March 2022 blog titled “Routing Without Rumor: Securing the Internet’s Routing System,” Verisign EVP & CSO, Danny McPherson, discussed how “RPKI creates new external and third-party dependencies that, as adoption continues, ultimately replace the traditionally autonomous operation of the routing system with a more centralized model. If too tightly coupled to the routing system, these dependencies may impact the robustness and resilience of the internet itself.” McPherson’s blog also reviewed the importance of securing the global internet BGP routing system, including utilizing RPKI to help overcome the hurdles that BGP’s implicit trust model presents.

RPKI Route Origin Validation (ROV) is one critical step forward in securing the global BGP system to prevent mis-originations and errors from propagating invalid routing information worldwide. RPKI ROV helps move the needle towards a safer internet. However, just as McPherson pointed out, this comes at the expense of creating a new external dependency within the operational path of Verisign’s critical Domain Name System (DNS) services.

RPKI Speed Bumps

At NANOG 87, we shared our concerns on how systemic and circular dependencies must be acknowledged and mitigated, to the extent possible. The following are some concerns and potential risks related to RPKI:

  • RPKI has yet to reach the operational maturity of related, established routing protocols, such as BGP. BGP has been around for over 30 years, but comparatively, RPKI has been growing in the Internet Engineering Task Force (IETF) Secure Inter-Domain Routing Operations (SIDROPS) working group for only 12 years. Currently, RPKI Unique Prefix-Origin Pairs are seen for just over 40% of the global routing prefixes, and much of that growth has occurred only in the last four years. Additionally, as the RPKI system gains support, we see how it occasionally fails due to a lack of maturity. The good news is that the IETF is actively engaged in making improvements to the system, and it’s rewarding to see the progress being made.
  • Every organization deploying RPKI needs to understand the circular dependencies that may arise. For example, publishing a Route Origin Authorization (ROA) in the RPKI system requires the DNS. Additionally, there are over 20 publishing points in the RPKI system today with fully qualified domain names (FQDNs) in the .com and .net top-level domains (TLDs). All five of the Regional Internet Registries (RIRs) use the .net TLD for their RPKI infrastructure.
  • Adopting RPKI means taking on additional, complex responsibilities. Organizations that participate in RPKI inherit additional operational tasks for testing, publishing, and alerting of the RPKI system and ultimately operating net-new infrastructure; however, these 24/7 services are critical when it comes to supporting a system that relates to routing stability.
  • In order to adequately monitor RPKI deployment, ample resources are required. Real-time monitoring should be considered a basic requirement for both internal and external RPKI infrastructure. As such, organizations must allocate technical engineering resources and support services to meet this need.

Additional considerations include:

  • the shared fate dependency (i.e., when all prefixes are signed with ROAs)
  • long-term engineering support
  • operational integration of RPKI systems
  • operational experience of RIRs as they now run critical infrastructure to support RPKI
  • overclaiming with the RIR certification authorities
  • lack of transparency for operator ROV policies
  • inconsistency between open source RPKI validator development efforts
  • the future scale of RPKI

These items require careful consideration before implementing RPKI, not afterwards.

Managing Risks

To better manage potential risks in our journey towards RPKI adoption, we established “day zero” requirements. These included firm conditions that must be met before any further testing could occur, including monitoring data across multiple protocols, coupled with automated ROA/IRR provisioning.

The deliberate decision to take a measured approach has proved rewarding, leaving us better positioned to manage and maintain our data and critical RPKI systems.

Investing engineering cycles in building robust monitoring and automation has increased our awareness of trends and outages based on global and local observability. As a result, operations and support teams benefit from live training on how to respond to RPKI-related events. This has helped us improve operational readiness in response to incidents. Additionally, automation reduces the risk of human error and, when coupled with monitoring, introduces stronger guardrails throughout the provisioning process.

Balancing Our Mission with Adopting New Technology

Verisign’s core mission is to enable the world to connect online with reliability and confidence, anytime, anywhere. This means that as we adopt RPKI, we must adhere to strict design principles that don’t risk sacrificing the integrity and availability of DNS data.

Our path to RPKI adoption is just one example of how we continuously strive for improvement and implement new technology, all while ensuring we protect Verisign’s critical DNS services.

While there are obstacles ahead of us, at Verisign we strongly advocate for consistent, focused discipline and continuous improvement. This means our course is set – we are firmly moving toward RPKI adoption.

Conclusion

Our goal is to improve internet routing security programs through efforts such as technology implementation, industry engagement, standards development, open-source contributions, funding, and the identification of shared risks which need to be understood and managed appropriately.

Implementing RPKI at your own organization will require broad investment in your people, processes, and technology stack. At Verisign specifically, we have assigned resources to perform research, increased budgets, completed various risk management tasks, and allocated significant time to development and engineering cycles. While RPKI itself does not address all security issues, there are incremental steps we can collectively take toward building a more resilient internet routing security paradigm.

As stewards of the internet, we are implementing RPKI as the next step in strengthening the security of internet routing information. We look forward to sharing updates on our progress.

The post Building a More Secure Routing System: Verisign’s Path to RPKI appeared first on Verisign Blog.

Researchers Uncover New BGP Flaws in Popular Internet Routing Protocol Software

By Ravie Lakshmanan
Cybersecurity researchers have uncovered weaknesses in a software implementation of the Border Gateway Protocol (BGP) that could be weaponized to achieve a denial-of-service (DoS) condition on vulnerable BGP peers. The three vulnerabilities reside in version 8.4 of FRRouting, a popular open source internet routing protocol suite for Linux and Unix platforms. It's currently used by several

Routing Without Rumor: Securing the Internet’s Routing System

By Danny McPherson
colorful laptop

This article is based on a paper originally published as part of the Global Commission on the Stability of Cyberspace’s Cyberstability Paper Series, “New Conditions and Constellations in Cyber,” on Dec. 9, 2021.

The Domain Name System has provided the fundamental service of mapping internet names to addresses from almost the earliest days of the internet’s history. Billions of internet-connected devices use DNS continuously to look up Internet Protocol addresses of the named resources they want to connect to — for instance, a website such as blog.verisign.com. Once a device has the resource’s address, it can then communicate with the resource using the internet’s routing system.

Just as ensuring that DNS is secure, stable and resilient is a priority for Verisign, so is making sure that the routing system has these characteristics. Indeed, DNS itself depends on the internet’s routing system for its communications, so routing security is vital to DNS security too.

To better understand how these challenges can be met, it’s helpful to step back and remember what the internet is: a loosely interconnected network of networks that interact with each other at a multitude of locations, often across regions or countries.

Packets of data are transmitted within and between those networks, which utilize a collection of technical standards and rules called the IP suite. Every device that connects to the internet is uniquely identified by its IP address, which can take the form of either a 32-bit IPv4 address or a 128-bit IPv6 address. Similarly, every network that connects to the internet has an Autonomous System Number, which is used by routing protocols to identify the network within the global routing system.

The primary job of the routing system is to let networks know the available paths through the internet to specific destinations. Today, the system largely relies on a decentralized and implicit trust model — a hallmark of the internet’s design. No centralized authority dictates how or where networks interconnect globally, or which networks are authorized to assert reachability for an internet destination. Instead, networks share knowledge with each other about the available paths from devices to destination: They route “by rumor.”

The Border Gateway Protocol

Under the Border Gateway Protocol, the internet’s de-facto inter-domain routing protocol, local routing policies decide where and how internet traffic flows, but each network independently applies its own policies on what actions it takes, if any, with data that connects through its network.

BGP has scaled well over the past three decades because 1) it operates in a distributed manner, 2) it has no central point of control (nor failure), and 3) each network acts autonomously. While networks may base their routing policies on an array of pricing, performance and security characteristics, ultimately BGP can use any available path to reach a destination. Often, the choice of route may depend upon personal decisions by network administrators, as well as informal assessments of technical and even individual reliability.

Route Hijacks and Route Leaks

Two prominent types of operational and security incidents occur in the routing system today: route hijacks and route leaks. Route hijacks reroute internet traffic to an unintended destination, while route leaks propagate routing information to an unintended audience. Both types of incidents can be accidental as well as malicious.

Preventing route hijacks and route leaks requires considerable coordination in the internet community, a concept that fundamentally goes against the BGP’s design tenets of distributed action and autonomous operations. A key characteristic of BGP is that any network can potentially announce reachability for any IP addresses to the entire world. That means that any network can potentially have a detrimental effect on the global reachability of any internet destination.

Resource Public Key Infrastructure

Fortunately, there is a solution already receiving considerable deployment momentum, the Resource Public Key Infrastructure. RPKI provides an internet number resource certification infrastructure, analogous to the traditional PKI for websites. RPKI enables number resource allocation authorities and networks to specify Route Origin Authorizations that are cryptographically verifiable. ROAs can then be used by relying parties to confirm the routing information shared with them is from the authorized origin.

RPKI is standards-based and appears to be gaining traction in improving BGP security. But it also brings new challenges.

Specifically, RPKI creates new external and third-party dependencies that, as adoption continues, ultimately replace the traditionally autonomous operation of the routing system with a more centralized model. If too tightly coupled to the routing system, these dependencies may impact the robustness and resilience of the internet itself. Also, because RPKI relies on DNS and DNS depends on the routing system, network operators need to be careful not to introduce tightly coupled circular dependencies.

Regional Internet Registries, the organizations responsible for top-level number resource allocation, can potentially have direct operational implications on the routing system. Unlike DNS, the global RPKI as deployed does not have a single root of trust. Instead, it has multiple trust anchors, one operated by each of the RIRs. RPKI therefore brings significant new security, stability and resiliency requirements to RIRs, updating their traditional role of simply allocating ASNs and IP addresses with new operational requirements for ensuring the availability, confidentiality, integrity, and stability of this number resource certification infrastructure.

As part of improving BGP security and encouraging adoption of RPKI, the routing community started the Mutually Agreed Norms for Routing Security initiative in 2014. Supported by the Internet Society, MANRS aims to reduce the most common routing system vulnerabilities by creating a culture of collective responsibility towards the security, stability and resiliency of the global routing system. MANRS is continuing to gain traction, guiding internet operators on what they can do to make the routing system more reliable.

Conclusion

Routing by rumor has served the internet well, and a decade ago it may have been ideal because it avoided systemic dependencies. However, the increasingly critical role of the internet and the evolving cyberthreat landscape require a better approach for protecting routing information and preventing route leaks and route hijacks. As network operators deploy RPKI with security, stability and resiliency, the billions of internet-connected devices that use DNS to look up IP addresses can then communicate with those resources through networks that not only share routing information with one another as they’ve traditionally done, but also do something more. They’ll make sure that the routing information they share and use is secure — and route without rumor.

The post Routing Without Rumor: Securing the Internet’s Routing System appeared first on Verisign Blog.

❌