FreshRSS

🔒
❌ About FreshRSS
There are new available articles, click to refresh the page.
Before yesterdayYour RSS feeds

Stealthy Zardoor Backdoor Targets Saudi Islamic Charity Organization

By Newsroom
An unnamed Islamic non-profit organization in Saudi Arabia has been targeted as part of a stealthy cyber espionage campaign designed to drop a previously undocumented backdoor called Zardoor. Cisco Talos, which discovered the activity in May 2023, said the campaign has likely persisted since at least March 2021, adding it has identified only one compromised target to date, although it's

8Base Group Deploying New Phobos Ransomware Variant via SmokeLoader

By Newsroom
The threat actors behind the 8Base ransomware are leveraging a variant of the Phobos ransomware to conduct their financially motivated attacks. The findings come from Cisco Talos, which has recorded an increase in activity carried out by the cybercriminals. “Most of the group’s Phobos variants are distributed by SmokeLoader, a backdoor trojan," security researcher Guilherme Venere said in an

ShroudedSnooper's HTTPSnoop Backdoor Targets Middle East Telecom Companies

By THN
Telecommunication service providers in the Middle East are the target of a new intrusion set dubbed ShroudedSnooper that employs a stealthy backdoor called HTTPSnoop. "HTTPSnoop is a simple, yet effective, backdoor that consists of novel techniques to interface with Windows HTTP kernel drivers and devices to listen to incoming requests for specific HTTP(S) URLs and execute that content on the

Cybercriminals Weaponizing Legitimate Advanced Installer Tool in Crypto-Mining Attacks

By THN
A legitimate Windows tool used for creating software packages called Advanced Installer is being abused by threat actors to drop cryptocurrency-mining malware on infected machines since at least November 2021. "The attacker uses Advanced Installer to package other legitimate software installers, such as Adobe Illustrator, Autodesk 3ds Max, and SketchUp Pro, with malicious scripts and uses

Tourists Give Themselves Away by Looking Up. So Do Most Network Intruders.

By BrianKrebs

In large metropolitan areas, tourists are often easy to spot because they’re far more inclined than locals to gaze upward at the surrounding skyscrapers. Security experts say this same tourist dynamic is a dead giveaway in virtually all computer intrusions that lead to devastating attacks like data theft and ransomware, and that more organizations should set simple virtual tripwires that sound the alarm when authorized users and devices are spotted exhibiting this behavior.

In a blog post published last month, Cisco Talos said it was seeing a worrisome “increase in the rate of high-sophistication attacks on network infrastructure.” Cisco’s warning comes amid a flurry of successful data ransom and state-sponsored cyber espionage attacks targeting some of the most well-defended networks on the planet.

But despite their increasing complexity, a great many initial intrusions that lead to data theft could be nipped in the bud if more organizations started looking for the telltale signs of newly-arrived cybercriminals behaving like network tourists, Cisco says.

“One of the most important things to talk about here is that in each of the cases we’ve seen, the threat actors are taking the type of ‘first steps’ that someone who wants to understand (and control) your environment would take,” Cisco’s Hazel Burton wrote. “Examples we have observed include threat actors performing a ‘show config,’ ‘show interface,’ ‘show route,’ ‘show arp table’ and a ‘show CDP neighbor.’ All these actions give the attackers a picture of a router’s perspective of the network, and an understanding of what foothold they have.”

Cisco’s alert concerned espionage attacks from China and Russia that abused vulnerabilities in aging, end-of-life network routers. But at a very important level, it doesn’t matter how or why the attackers got that initial foothold on your network.

It might be zero-day vulnerabilities in your network firewall or file-transfer appliance. Your more immediate and primary concern has to be: How quickly can you detect and detach that initial foothold?

The same tourist behavior that Cisco described attackers exhibiting vis-a-vis older routers is also incredibly common early on in ransomware and data ransom attacks — which often unfurl in secret over days or weeks as attackers methodically identify and compromise a victim’s key network assets.

These virtual hostage situations usually begin with the intruders purchasing access to the target’s network from dark web brokers who resell access to stolen credentials and compromised computers. As a result, when those stolen resources first get used by would-be data thieves, almost invariably the attackers will run a series of basic commands asking the local system to confirm exactly who and where they are on the victim’s network.

This fundamental reality about modern cyberattacks — that cybercriminals almost always orient themselves by “looking up” who and where they are upon entering a foreign network for the first time — forms the business model of an innovative security company called Thinkst, which gives away easy-to-use tripwires or “canaries” that can fire off an alert whenever all sorts of suspicious activity is witnessed.

“Many people have pointed out that there are a handful of commands that are overwhelmingly run by attackers on compromised hosts (and seldom ever by regular users/usage),” the Thinkst website explains. “Reliably alerting when a user on your code-sign server runs whoami.exe can mean the difference between catching a compromise in week-1 (before the attackers dig in) and learning about the attack on CNN.”

These canaries — or “canary tokens” — are meant to be embedded inside regular files, acting much like a web beacon or web bug that tracks when someone opens an email.

The Canary Tokens website from Thinkst Canary lists nearly two-dozen free customizable canaries.

“Imagine doing that, but for file reads, database queries, process executions or patterns in log files,” the Canary Tokens documentation explains. “Canarytokens does all this and more, letting you implant traps in your production systems rather than setting up separate honeypots.”

Thinkst operates alongside a burgeoning industry offering so-called “deception” or “honeypot” services — those designed to confuse, disrupt and entangle network intruders. But in an interview with KrebsOnSecurity, Thinkst founder and CEO Haroon Meer said most deception techniques involve some degree of hubris.

“Meaning, you’ll have deception teams in your network playing spy versus spy with people trying to break in, and it becomes this whole counterintelligence thing,” Meer said. “Nobody really has time for that. Instead, we are saying literally the opposite: That you’ve probably got all these [security improvement] projects that are going to take forever. But while you’re doing all that, just drop these 10 canaries, because everything else is going to take a long time to do.”

The idea here is to lay traps in sensitive areas of your network or web applications where few authorized users should ever trod. Importantly, the canary tokens themselves are useless to an attacker. For example, that AWS canary token sure looks like the digital keys to your cloud, but the token itself offers no access. It’s just a lure for the bad guys, and you get an alert when and if it is ever touched.

One nice thing about canary tokens is that Thinkst gives them away for free. Head over to canarytokens.org, and choose from a drop-down menu of available tokens, including:

-a web bug / URL token, designed to alert when a particular URL is visited;
-a DNS token, which alerts when a hostname is requested;
-an AWS token, which alerts when a specific Amazon Web Services key is used;
-a “custom exe” token, to alert when a specific Windows executable file or DLL is run;
-a “sensitive command” token, to alert when a suspicious Windows command is run.
-a Microsoft Excel/Word token, which alerts when a specific Excel or Word file is accessed.

Much like a “wet paint” sign often encourages people to touch a freshly painted surface anyway, attackers often can’t help themselves when they enter a foreign network and stumble upon what appear to be key digital assets, Meer says.

“If an attacker lands on your server and finds a key to your cloud environment, it’s really hard for them not to try it once,” Meer said. “Also, when these sorts of actors do land in a network, they have to orient themselves, and while doing that they are going to trip canaries.”

Meer says canary tokens are as likely to trip up attackers as they are “red teams,” security experts hired or employed by companies seeking to continuously probe their own computer systems and networks for security weaknesses.

“The concept and use of canary tokens has made me very hesitant to use credentials gained during an engagement, versus finding alternative means to an end goal,” wrote Shubham Shah, a penetration tester and co-founder of the security firm Assetnote. “If the aim is to increase the time taken for attackers, canary tokens work well.”

Thinkst makes money by selling Canary Tools, which are honeypots that emulate full blown systems like Windows servers or IBM mainframes. They deploy in minutes and include a personalized, private Canarytoken server.

“If you’ve got a sophisticated defense team, you can start putting these things in really interesting places,” Meer said. “Everyone says their stuff is simple, but we obsess over it. It’s really got to be so simple that people can’t mess it up. And if it works, it’s the best bang for your security buck you’re going to get.”

Further reading:

Dark Reading: Credential Canaries Create Minefield for Attackers
NCC Group: Extending a Thinkst Canary to Become an Interactive Honeypot
Cruise Automation’s experience deploying canary tokens

New Yashma Ransomware Variant Targets Multiple English-Speaking Countries

By THN
An unknown threat actor is using a variant of the Yashma ransomware to target various entities in English-speaking countries, Bulgaria, China, and Vietnam at least since June 4, 2023. Cisco Talos, in a new write-up, attributed the operation with moderate confidence to an adversary of likely Vietnamese origin. "The threat actor uses an uncommon technique to deliver the ransom note," security

Hackers Exploit Windows Policy Loophole to Forge Kernel-Mode Driver Signatures

By THN
A Microsoft Windows policy loophole has been observed being exploited primarily by native Chinese-speaking threat actors to forge signatures on kernel-mode drivers. "Actors are leveraging multiple open-source tools that alter the signing date of kernel mode drivers to load malicious and unverified drivers signed with expired certificates," Cisco Talos said in an exhaustive two-part report shared

Predator Android Spyware: Researchers Uncover New Data Theft Capabilities

By Ravie Lakshmanan
Security researchers have detailed the inner workings of the commercial Android spyware called Predator, which is marketed by the Israeli company Intellexa (previously Cytrox). Predator was first documented by Google's Threat Analysis Group (TAG) in May 2022 as part of attacks leveraging five different zero-day flaws in the Chrome web browser and Android. The spyware, which is delivered by means

Typhon Reborn Stealer Malware Resurfaces with Advanced Evasion Techniques

By Ravie Lakshmanan
The threat actor behind the information-stealing malware known as Typhon Reborn has resurfaced with an updated version (V2) that packs in improved capabilities to evade detection and resist analysis. The new version is offered for sale on the criminal underground for $59 per month, $360 per year, or alternatively, for $540 for a lifetime subscription. "The stealer can harvest and exfiltrate

YoroTrooper Stealing Credentials and Information from Government and Energy Organizations

By Ravie Lakshmanan
A previously undocumented threat actor dubbed YoroTrooper has been targeting government, energy, and international organizations across Europe as part of a cyber espionage campaign that has been active since at least June 2022. "Information stolen from successful compromises include credentials from multiple applications, browser histories and cookies, system information and screenshots," Cisco

Black Hat Europe 2022 NOC: The SOC Inside the NOC

By Jessica Bair

Our core mission in the NOC is network resilience. We also provide integrated security, visibility and automation, a SOC inside the NOC.

In part one, we covered:

  • Designing the Black Hat Network, by Evan Basta
  • AP Placement Planning, by Sandro Fasser
  • Wi-Fi Air Marshal, by Jérémy Couture, Head of SOC, Paris 2024 Olympic Games
  • Meraki Dashboards, by Rossi Rosario Burgos
  • Meraki Systems Manager, by Paul Fidler
  • A Better Way to Design Training SSIDs/VLANs, by Paul Fidler

In part two, we are going deep with security:

  • Integrating Security
  • First Time at Black Hat, by Jérémy Couture, Head of SOC, Paris 2024 Olympic Games
  • Trojan on an Attendee Laptop, by Ryan MacLennan
  • Automated Account Provisioning, by Adi Sankar
  • Integrating Meraki Scanning Data with Umbrella Security Events, by Christian Clasen
  • Domain Name Service Statistics, by Adi Sankar

Integrating Security

As the needs of Black Hat evolved, so did the Cisco Secure Technologies in the NOC:

The SecureX dashboard made it easy to see the status of each of the connected Cisco Secure technologies.

Since joining the Black Hat NOC in 2016, my goal remains integration and automation. As a NOC team comprised of many technologies and companies, we are pleased that this Black Hat NOC was the most integrated to date, to provide an overall SOC cybersecurity architecture solution.

We have ideas for even more integrations for Black Hat Asia and Black Hat USA 2023. Thank you, Piotr Jarzynka, for designing the integration diagram.

Below are the SecureX threat response integrations for Black Hat Europe, empowering analysts to investigate Indicators of Compromise very quickly, with one search.

The original Black Hat NOC integration for Cisco was NetWitness sending suspicious files to Threat Grid (know Secure Malware Analytics). We expanded that in 2022 with Palo Alto Networks Cortex XSOAR and used it in London, for investigation of malicious payload attack.

NetWitness observed a targeted attack against the Black Hat network. The attack was intended to compromise the network.

NetWitness extracted the payload and sent it to Secure Malware Analytics for detonation.

Reviewing the analysis report, we were able to quickly determine it was the MyDoom worm, which would have been very damaging.

The attack was blocked at the perimeter and the analysts were able to track and enrich the incident in XSOAR.

First Time at Black Hat, by Jérémy Couture, Head of SOC, Paris 2024 Olympic Games

My first time at Black Hat turned out to be an incredible journey!

Thanks to the cybersecurity partnership between Paris 2024 and Cisco, I was able to integrate into the Cisco Crew, to operate the NOC/SOC as a Threat Hunter on the most dangerous network in the world for this European Edition of Black Hat.

My first day, I helped with deploying the network by installing the wireless Meraki APs on the venue, understanding how they were configured and how they could help analysts to identify and locate any client connected to the network that could have a bad behavior during the event, the idea being to protect the attendees if an attack was to spray on the network.

Following this “physical” deployment, I’ve been able to access the whole Cisco Secure environment including Meraki, Secure Malware Analytics, Umbrella, SecureX and the other Black Hat NOC partners software tools.

SecureX was definitely the product on which I wanted to step up. By having so fantastic professionals around me, we were able to dig in the product, identifying potential use cases to deploy in the orchestration module and expected integrations for Paris 2024.

Time was flying and so were the attendees to the conference, a network without user is fun but can be quite boring as nothing happens, having so many cybersecurity professional at the same place testing different security malwares, attacks and so on led us to very interesting investigations. A paradox at the Black Hat, we do not want to block malicious content as it could be part of exercises or training classes, quite a different mindset as what we, security defenders, are used to! Using the different components, we were able to find some observables/IOCs that we investigate through SecureX, SecureX being connected to all the other components helped us to enrich the observables (IPs, urls, domains…), understanding the criticality of what we identified (such as malware payloads) and even led us to poke the folks in the training classes to let them know that something really wrong was happening on their devices.

Being part of the Black Hat NOC was an incredible experience, I was able to meet fantastic professionals, fully committed on making the event a success for all attendees and exhibitors. It also helped me to better understand how products, that we use or will use within Paris 2024, could be leveraged to our needs and which indicators could be added to our various Dashboards, helping us to identify, instantaneously, that something is happening. 

Trojan on an Attendee Laptop, by Ryan MacLennan

During the last day of Black Hat Europe, our NOC partner, NetWitness saw some files being downloaded on the network. The integration again automatically carved out the file and submitted the Cisco Secure Malware Analytics (SMA) platform. One of those files came back as a trojan, after SMA detonated the file in a sandbox environment. The specific hash is the below SHA-256:

938635a0ceed453dc8ff60eab20c5d168a882bdd41792e5c5056cc960ebef575

The screenshot below shows some of the behaviors that influenced the decision:

The result of seeing these behaviors caused SMA to give it the highest judgement score available to a detonated file:

After this judgement was made, we connected with the Palo Alto Networks team, and they found the IP address associated with the file download.

Once we had this information, we went to the Meraki dashboard and did a search for the IP address. The search returned only one client that has been associated with the address for the entire Black Hat conference.

Knowing that there has only been one client associated with the address made finding the attendee easier. We then needed to know where they were and Meraki had this figured out. After opening the client’s profile, we saw what SSID and access point (AP) they were connected to using the Meraki location map.

We then found the attendee and let them know to have their IT inspect their laptop to make sure it is clean.

Apart from the technical challenges of running a temporary network for N thousand people, the Black Hat event reminded us that success doesn’t happen without teamwork; that leadership isn’t just about keeping the project on track. It is also about looking after the team and that small details in planning, build up and tear down can be just as important, as having all the right tools and fantastically skilled Individuals using them during the event itself.

Automated Account Provisioning, by Adi Sankar

In the Cisco Secure technology stack, within the Black Hat NOC, we use SecureX Single Sign-on. This reduces the confusion of managing multiple accounts and passwords. It also streamlines the integrations between the Cisco products and our fellow NOC partners. We have an open ecosystem approach to integrations and access in the NOC, so we will provision Cisco Secure accounts for any staff member of the NOC. Logging into each individual console and creating an account is time consuming and can often lead to confusion on which tools to provision and which permission levels are needed.

To automate this process, I developed two workflows: one to create non-admin users for NOC partners and one to create administrator accounts in all the tools for Cisco staff. The workflows create accounts in SecureX, Secure Malware Analytics (Threat Grid), Umbrella DNS and Meraki dashboard, all using SecureX Single Sign-On.

Here is what the workflow looks like for creating non-admin users.

The workflow requires three inputs: first name, last name, and email. Click Run.

The sequence of API calls is as follows:

  • Generate a SecureX token to access the SecureX API including the “admin/invite:write, invite:write” scopes.
  • Invite the User to SecureX using the invite API (https://visibility.amp.cisco.com/iroh/invite/index.html#/). In the body of this POST the role is set to “user”. In the Administrator workflow this would be set to “admin” allowing full access to SecureX.
  • If the invite fails due to a duplicate invite, print an error message in Webex teams.
  • Invite the user to the Meraki dashboard using the “admins” API (https://api.meraki.com/api/v1/organizations/{organizationId}/admins). In the body of this call, the organization access is set to none, and access to two networks (Wireless network and Systems Manager) are set to “read-only” to ensure the user cannot make any changes to affect the network. In the Administrator version org access is still set to none but “full” permissions are provided to the two networks, something we do not want all users to have.
  • Generate a token to the new Umbrella API using https://api.umbrella.com/auth/v2/token with the following scopes (read admin users, write admin users, read admin roles). This single endpoint for generating a token based on scopes has made using the Umbrella API significantly easier.
  • Then invite the user to Umbrella using the “admins” API at (https://api.umbrella.com/admin/v2/users) and in the body of this POST the “role ID” is set to 2 to ensure read-only permissions are provisioned for Umbrella.
  • Create a user in Secure Malware analytics using the API at (https://panacea.threatgrid.com/api/v3/organizations/<ORG_ID>/users). The body of this request simply creates a Malware Analytics login using the users last name and appending “_blackhat”
  • The last call is to send a password reset email for the Malware Analytics user. (https://panacea.threatgrid.com/api/v3/users/<LOGIN>/password-email) They can set their password via the email, login to the Malware Analytics console and then link their SecureX sign-on account, which means they will no longer need to use their Malware Analytics credentials.

Once the workflow has completed successfully, the user will receive four emails to create a SecureX Sign-On account and accept the invitations to the various products. These workflows really improved our responsiveness to account provisioning requests and makes it much easier to collaborate with other NOC partners.

Integrating Meraki Scanning Data with Umbrella Security Events, by Christian Clasen

Over the previous Black Hat events, we have been utilizing Meraki scanning data to get location data for individual clients, as they roamed conference. In the initial blog post (Black Hat Asia 2022), we created a Docker container to accept the data from the Meraki Scanning API and save it for future analysis. At Black Hat USA 2022, we wrote about how to use Python Folium to use the flat text files to generate chronological heatmaps that illustrated the density of clients throughout the conference.

This time around, we’ve stepped it up again by integrating Umbrella DNS Security events and adding the ability to track clients across the heatmap using their local IP address.

To improve the portability of our data and the efficiency of our code, we began by moving from flat JSON files to a proper database. We chose SQLite this time around, though going forward we will likely use Mongo.

Both can be queried directly into Python Pandas dataframes which is what will give us the optimal performance we are looking for. We have a dedicated Docker container (Meraki-Receiver) that will validate the incoming data stream from the Meraki dashboard and insert the values into the database.

The database is stored on a Docker volume that can be mounted by our second container, the Meraki-Mapper. Though this container’s primary purpose is building the heatmaps, it also performs the task of retrieving and correlating Umbrella DNS security events. That is, any DNS query from the Black Hat network that matches one of several predefined security categories. Umbrella’s APIs were recently improved to add OAuth and simplify the URI scheme for each endpoint. After retrieving a token, we can get all security events in the time frame of the current heatmap with one call.

What we want to do with these events is to create Folium Markers. These are static “pins” that will sit on the map to indicate where the DNS query originated from. Clicking on a marker will popup more information about the query and the client who sent it.

Thanks to the Umbrella Virtual Appliances in the Black Hat network, we have the internal IP address of the client who sent the DNS query. We also have the internal IP address in the Meraki scanning data, along with the latitude and longitude. After converting the database query into a Pandas dataframe, our logic takes the IP address from the DNS query and finds all instances in the database of location data for that IP within a 5-minute window (the resolution of our heatmap).

What we end up with is a list of dictionaries representing the markers we want to add to the map. Using Bootstrap, we can format the popup for each event to make it look a bit more polished. Folium’s Popup plugin allows for an iFrame for each marker popup.

The result is a moving heatmap covering an entire day on a given conference floor, complete with markers indicating security events (the red pushpin icon).

Clicking on the pushpin shows the details of the query, allowing us in the NOC to see the exact location of the client when they sent it.

To further improve this service during the next conference, we plan to implement a web page where NOC staff can submit an IP address and immediately get map tracking that client through the conference floor. This should give us an even more efficient way to find and notify folks who are either behaving maliciously or appear to be infected.

Domain Name Service Statistics, by Adi Sankar

For years we have been tracking the DNS stats at the Blackhat conferences. The post-pandemic 2022 numbers look like we never skipped a beat after the dip in DNS queries from 2021, seen in the bar graph below. This year’s attendance saw well over 11 million total DNS queries.

The Activity volume view from Umbrella gives a top-level level glance of activity by category, which we can drill into for deeper threat hunting. On trend with the previous Black Hat Europe events, the top Security categories were Dynamic DNS and Newly Seen Domains. However, it’s worth noting a proportionally larger increase in the cryptomining and phishing categories from 9 to 17 and 28 to 73, respectively, compared to last year.

These years, Black Hat saw over 4,100 apps connect to the network, which is nearly double of what was seen last year. However, still not topping over 6,100 apps seen at Black Hat USA early this year.

Should the need arise, we can block any application, such as Mail.ru above.

Black Hat Europe 2022 was the best planned and executed NOC in my experience, with the most integrations and visibility. This allowed us the time to deal with problems, which will always arise.

We are very proud of the collaboration of the team and the NOC partners.

Black Hat Asia will be in May 2023, at the Marina Bay Sands, Singapore…hope to see you there!

Acknowledgments

Thank you to the Cisco NOC team:

  • Cisco Secure: Ian Redden, Christian Clasen, Aditya Sankar, Ryan MacLennan, Guillaume Buisson, Jerome Schneider, Robert Taylor, Piotr Jarzynka, Tim Wadhwa-Brown and Matthieu Sprunck
  • Threat Hunter / Paris 2024 Olympics SOC: Jérémy Couture
  • Meraki Network: Evan Basta, Sandro Fasser, Rossi Rosario Burgos, Otis Ioannou, Asmae Boutkhil, Jeffry Handal and Aleksandar Dimitrov Vladimirov
  • Meraki Systems Manager: Paul Fidler

Also, to our NOC partners NetWitness (especially David Glover, Iain Davidson, Alessandro Contini and Alessandro Zatti), Palo Alto Networks (especially James Holland, Matt Ford, Matt Smith and Mathew Chase), Gigamon, IronNet, and the entire Black Hat / Informa Tech staff (especially Grifter ‘Neil Wyler’, Bart Stump, Steve Fink, James Pope, Jess Stafford and Steve Oldenbourg).

About Black Hat

For 25 years, Black Hat has provided attendees with the very latest in information security research, development, and trends. These high-profile global events and trainings are driven by the needs of the security community, striving to bring together the best minds in the industry. Black Hat inspires professionals at all career levels, encouraging growth and collaboration among academia, world-class researchers, and leaders in the public and private sectors. Black Hat Briefings and Trainings are held annually in the United States, Europe and USA. More information is available at: blackhat.com. Black Hat is brought to you by Informa Tech.


We’d love to hear what you think. Ask a Question, Comment Below, and Stay Connected with Cisco Secure on social!

Cisco Secure Social Channels

Instagram
Facebook
Twitter
LinkedIn

Black Hat Europe 2022 NOC: When planning meets execution

By Jessica Bair

In this blog about the design, deployment and automation of the Black Hat network, we have the following sections:

  • Designing the Black Hat Network, by Evan Basta
  • AP Placement Planning, by Sandro Fasser
  • Wi-Fi Air Marshal, by Jérémy Couture, Head of SOC, Paris 2024 Olympic Games
  • Meraki Dashboards, by Rossi Rosario Burgos
  • Meraki Systems Manager, by Paul Fidler
  • A Better Way to Design Training SSIDs/VLANs, by Paul Fidler

Cisco is honored to be a Premium Partner of the Black Hat NOC, and is the Official Network Platform, Mobile Device Management, Malware Analysis and DNS (Domain Name Service) Provider of Black Hat.

2022 was Cisco’s sixth year as a NOC partner for Black Hat Europe. However, it was our first time building the network for Black Hat Europe. We used experiences of Black Hat Asia 2022 and Black Hat USA 2022 to refine the planning for network topology design and equipment. Below are our fellow NOC partners providing hardware, to build and secure the network, for our joint customer: Black Hat.

Designing the Black Hat Network, by Evan Basta

We are grateful to share that Black Hat Europe 2022 was the smoothest experience we’ve had in the years at Black Hat. This is thanks to the 15 Cisco Meraki and Cisco Secure engineers on site (plus virtually supporting engineers) to build, operate and secure the network; and great NOC leadership and collaborative partners.

To plan, configure, deploy (in two days), maintain resilience, and recover (in four hours) an enterprise class network, took a lot of coordination. We appreciate the Black Hat NOC leadership, Informa and the NOC partners; meeting each week to discuss the best design, staffing, gear selection and deployment, to meet the unique needs of the conference. Check out the “Meraki Unboxed” podcast – Episode 94: Learnings from the Black Hat Europe 2022 Cybersecurity Event

We must allow real malware on the Black Hat network: for training, demonstrations, and briefing sessions; while protecting the attendees from attack within the network from their fellow attendees, and prevent bad actors from using the network to attack the Internet. It is a critical balance to ensure everyone has a safe experience, while still being able to learn from real world malware, vulnerabilities, and malicious websites.

In addition to the weekly meetings with Black Hat and the other partners, the Cisco Meraki engineering team of Sandro Fasser, Rossi Rosario Burgos, Otis Ioannou, Asmae Boutkhil, Jeffry Handal and I met every Friday for two months. We also discussed the challenges in a Webex space with other engineers who worked on past Black Hat events.

The mission:

Division of labor is essential to reduce mistakes and stay laser focused on security scope. Otis took the lead working on network topology design with Partners. Asmae handled the port assignments for the switches. Rossi ensured every AP and Switch was tracked, and the MAC addresses were provided to Palo Alto Networks for DCHP assignments. Otis and Rossi spent two days in the server room with the NOC partners, ensuring every switch was operating and configured correctly. Rossi also deployed and configured a remote Registration switch for Black Hat.

AP Placement Planning, by Sandro Fasser

In the weeks before deployment, our virtual Meraki team member, Aleksandar Dimitrov Vladimirov, and I focused on planning and creating a virtual Wi-Fi site survey. Multiple requirements and restrictions had to be taken into consideration. The report was based on the ExCel centre floor plans, the space allocation requirements from Black Hat and the number of APs we had available to us. Although challenging to create, with some uncertainties and often changing requirements due to the number of stakeholders involved, the surveys AP placement for best coverage ended up being pivotal at the event.

Below is the Signal Strength plan for the Expo Hall Floor on the 5 GHz band. The original plan to go with a dual-Band deployment was adjusted onsite and the 2.4 GHz band was disabled to enhance performance and throughput. This was a decision made during the network setup, in coordination with the NOC Leadership and based on experience from past conferences.

Upon arrival at the ExCel Centre, we conducted a walkthrough of the space that most of us had only seen as a floor plan and on some photos. Thanks to good planning, we could start deploying the 100+ APs immediately, with only a small number of changes to optimize the deployment on-site. As the APs had been pre-staged and added to the Meraki dashboard, including their location on the floor maps, the main work was placing and cabling them physically. During operation, the floor plans in the Meraki Dashboard were a visual help to easily spot a problem and navigate the team on the ground to the right spot, if something had to be adjusted.

As the sponsors and attendees filled each space, in the Meraki dashboard, we were able to see in real-time the number of clients connected to each AP, currently and over the time of the conference. This enabled quick reaction if challenges were identified, or APs could be redeployed to other zones. Below is the ExCel Centre Capital Hall and London Suites, Level 0. We could switch between the four levels with a single click on the Floor Plans, and drill into any AP, as needed.

The Location heatmaps also provided essential visibility into conference traffic, both on the network and footfalls of attendees. Physical security is also an important aspect of cybersecurity; we need to know how devices move in space, know where valuable assets are located and monitor their safety.

Below is the Business Hall at lunchtime, on the opening day of the conference. You can see no live APs in the bottom right corner of the Location heatmap. This is an example of adapting the plan to reality onsite. In past Black Hat Europe conferences, the Lobby in that area was the main entrance. Construction in 2022 closed this entrance. So, those APs were reallocated to the Level 1 Lobby, where attendees would naturally flow from Registration.

The floor plans and heatmaps also helped with the Training, Briefings and Keynote network resilience. Capacity was easy to add temporarily, and we were able to remove it and relocate it after a space emptied.

Meraki API Integration for automatic device blocking

During our time in the NOC, we had the chance to work with other vendor engineers and some use cases that came up led to interesting collaborations. One specific use case was that we wanted to block wireless clients, that show some malicious or bad behavior, automatically after they have been identified by one of the SOC analysts on the different security platforms, in addition we wanted to show them a friendly warning page that guides them to the SOC for a friendly conversation.

The solution was a script that can be triggered thru the interfaces of the other security products and attaches a group policy thru the Meraki Dashboard, including a quarantine VLAN and a splash page, via the Meraki APIs. This integration was just one of the many collaboration bits that we worked on.

Wi-Fi Air Marshal, by Jérémy Couture, Head of SOC, Paris 2024 Olympic Games

During the first day of training, in the Meraki dashboard Air Marshal, I observed packet flood attacks, against we were able to adapt and remain resilient.

I also observed an AP spoofing and broadcast de-authentication attack. I was able to quickly identify the location of the attack, which was at the Lobby outside the Business Hall.  Should the attacks continue, physical security had the information to intervene. We also had the ability to track the MAC address throughout the venue, as discussed in Christian Clasen’s section in part two.

From our experiences at Black Hat USA 2022, we had encrypted frames enabled, blunting the attack.

Meraki Dashboards, by Rossi Rosario Burgos

The Meraki dashboards made it very easy to monitor the health of the network APs and Switches, with the ability to aggregate data, and quickly pivot into any switch, AP or clients.

Through the phases of the conference, from two days of pre-conference setup, to focused and intense training the first two days, and transition to the briefings and Business Hall, we were able to visualize the network traffic.

In addition, we could see the number of attendees who passed through the covered area of the conference, with or without connecting to the network. Christian Clasen takes this available data to a new level in Part 2 of the blog.

As the person with core responsibilities for the switch configuration and uptime, the Meraki dashboard made it very simple to quickly change the network topology, according to the needs of the Black Hat customer.

Meraki Systems Manager, by Paul Fidler

If you refer back to Black Hat USA 2022, you’d have seen that we had over 1,000 iOS devices to deploy, with which we had several difficulties. For context, the company that leases the devices to Black Hat doesn’t use a Mobile Device Management (MDM) platform for any of their other shows…Black Hat is the only one that does. So, instead of using a mass deployment technology, like Apple’s Automated Device Enrollment, the iOS devices are “prepared” using Apple Configurator. This includes uploading a Wi-Fi profile to the devices as part of that process. In Las Vegas, this Wi-Fi profile wasn’t set to auto join the Wi-Fi, resulting in the need to manually change this on 1,000 devices. Furthermore, 200 devices weren’t reset or prepared, so we had those to reimage as well.

Black Hat Europe 2022 was different. We took the lessons from US and coordinated with the contractor to prepare the devices. Now, if you’ve ever used Apple Configurator, there’s several steps needed to prepare a device. However, all of these can be actions can be combined into a Blueprint:

Instead of there being several steps to prepare a device, there is now just one! Applying the Blueprint!

For Black Hat Europe, this included:

  • Wi-Fi profile
  • Enrollment, including supervision
  • Whether to allow USB pairing
  • Setup Assistant pane skipping

There’s lots of other things that can be achieved as well, but this results in the time taken to enroll and set up a device to around 30 seconds. Since devices can be set up in parallel (you’re only limited by the number of USB cables / ports you have), this really streamlines the enrollment and set up process.

Now, for the future, whilst you can’t Export these blueprints, they are transportable. If you open Terminal on a Mac and type:
cd /Users/<YOUR USER NAME>/Library/Group Containers/K36BKF7T3D.group.com.apple.configurator/Library/Application Support/com.apple.configurator/Blueprints

You’ll see a file / package called something.blueprint This can be zipped up and emailed to some else so, they can then use the exact same Blueprint! You may need to reboot your computer for the Blueprint to appear in Apple Configurator.

Device Naming / Lock Screen Messages

As mentioned, the registration / lead capture / session scanning devices are provided by the contractor. Obviously, these are all catalogued and have a unique device code / QR code on the back of them. However, during setup, any device name provisioned on the device gets lost.

So, there’s three things we do to know, without having to resort to using the unwieldy serial number, what devices is what.

  • The first thing that we do is to use the Meraki API to rename Systems Manager Devices. The script created has some other functionality too, such as error handling, but it is possible to do this without a script. You can find it here. This ensures that the device has a name: iOS devices default to being called iPhone or iPad in Systems Manager when they first enroll, so, already, this is incredibly helpful.
  • The second thing we do is to use a simple Restrictions profile for iOS, which keeps the physical device’s name in sync with that in the dashboard
  • Lastly, we then use a Lock Screen payload to format the message on the device when it’s locked:

In the footnote, you’ll see Device Name and Device Serial in blue. This denotes that the values are actually dynamic and change per device. They include:

  • Organization name
  • Network name
  • Device name
  • Device serial
  • Device model
  • Device OS version
  • Device notes
  • Owner name
  • Owner email
  • Owner username
  • SM device ID

On the Lock Screen, it’s now possible to see the device’s name and serial number, without having to flip the device over (A problem for the registration devices which are locked in a secure case) or open systems preferences.

We also had integration with SecureX device insights, to see the security status of each iOS device.

With the ability to quickly check on device health from the SecureX dashboard.

 

Data Security

This goes without saying, but the iOS devices (Registration, Lead Capture and Session Scanning) do have access to personal information. To ensure the security of the data, devices are wiped at the end of the conference. This is incredibly satisfying, hitting the Erase Devices button in Meraki Systems Manager, and watching the 100+ devices reset!

A Better Way to Design Training SSIDs/VLANs, by Paul Fidler

Deploying a network like Black Hat takes a lot of work, and repetitive configuration. Much of this has been covered in previous blogs. However, to make things easier for this event, instead of the 60 training SSIDs we had in Black Hat US 2022, the Meraki team discussed the benefits of moving to iPSKs with Black Hat NOC Leadership, which accepted the plan.

For context, instead of having a single pre shared key for an SSID, iPSK functionality allows you to have 1000+. Each of these iPSKs can be assigned its own group policy / VLAN. So, we created a script:

  • That consumed networkID, SSID, Training name, iPSK and VLAN from a CSV
  • Created a group policy for that VLAN with the name of the training
  • Created an iPSK for the given SSID that referred to the training name

This only involves five API calls:

  • For a given network name, get the network ID
  • Get Group Policies
  • If the group policy exists, use that, else create a group policy, retaining the group policy ID
  • Get the SSIDs (to get the ID of the SSID)
  • Create an iPSK for the given SSID ID

The bulk of the script is error handling (The SSID or network doesn’t exist, for example) and logic!

The result was one SSID for all of training: BHTraining, and each classroom had their own password. This reduced the training SSIDs from over a dozen and helped clear the airwaves.

Check out part two – Black Hat Europe 2022 NOC: The SOC Inside the NOC 

Acknowledgments

Thank you to the Cisco NOC team:

  • Meraki Network: Evan Basta, Sandro Fasser, Rossi Rosario Burgos, Otis Ioannou, Asmae Boutkhil, Jeffry Handal and Aleksandar Dimitrov Vladimirov
  • Meraki Systems Manager: Paul Fidler
  • Cisco Secure: Ian Redden, Christian Clasen, Aditya Sankar, Ryan MacLennan, Guillaume Buisson, Jerome Schneider, Robert Taylor, Piotr Jarzynka, Tim Wadhwa-Brown and Matthieu Sprunck
  • Threat Hunter / Paris 2024 Olympics SOC: Jérémy Couture

Also, to our NOC partners NetWitness (especially David Glover, Iain Davidson, Alessandro Contini and Alessandro Zatti), Palo Alto Networks (especially James Holland, Matt Ford, Matt Smith and Mathew Chase), Gigamon, IronNet, and the entire Black Hat / Informa Tech staff (especially Grifter ‘Neil Wyler’, Bart Stump, Steve Fink, James Pope, Jess Stafford and Steve Oldenbourg).

About Black Hat

For 25 years, Black Hat has provided attendees with the very latest in information security research, development, and trends. These high-profile global events and trainings are driven by the needs of the security community, striving to bring together the best minds in the industry. Black Hat inspires professionals at all career levels, encouraging growth and collaboration among academia, world-class researchers, and leaders in the public and private sectors. Black Hat Briefings and Trainings are held annually in the United States, Europe and USA. More information is available at: blackhat.com. Black Hat is brought to you by Informa Tech.


We’d love to hear what you think. Ask a Question, Comment Below, and Stay Connected with Cisco Secure on social!

Cisco Secure Social Channels

Instagram
Facebook
Twitter
LinkedIn

Notorious Emotet Malware Returns With High-Volume Malspam Campaign

By Ravie Lakshmanan
The notorious Emotet malware has returned with renewed vigor as part of a high-volume malspam campaign designed to drop payloads like IcedID and Bumblebee. "Hundreds of thousands of emails per day" have been sent since early November 2022, enterprise security company Proofpoint said last week, adding, "the new activity suggests Emotet is returning to its full functionality acting as a delivery

ThreatWise TV: Exploring Recent Incident Response Trends

By Ben Nahorney

Today we’re examining some of the revelations in the Q3 Cisco Talos Incident Response Trends Report. This document is an anonymized look at of all the engagements that the Cisco Talos Incident Response team have been involved in over the previous three months. It also features threat intelligence from our team of researchers and analysts.  

To start, take a watch of this episode of ThreatWise TV which explores how these trends have evolved since the previous quarter. Our guests also talk about incidents and cyber-attacks that they themselves have consulted on recently, including a particularly interesting insider threat case. 

Highlights of the Q3 Cisco Talos Incident Response report 

Ransomware returned as the top threat this quarter, after commodity trojans narrowly surpassed ransomware last quarter. Ransomware made up nearly 18 percent of all threats observed, up from 15 percent last quarter. Cisco Talos Incident Response (CTIR) observed high-profile families, such as Vice Society and Hive, as well as the newer family Blast Basta, which first emerged in April of this year.   

Also noteworthy is the fact that CTIR saw an equal number in ransomware and pre- ransomware engagements this quarter, totalling nearly 40 percent of threats observed. Pre-ransomware is when we have observed a ransomware attack is about to happen, but the encryption of files has not yet taken place. 

Pre-ransomware comprised 18 percent of threats this quarter, up from less than 5 percent previously. While it’s difficult to determine an adversary’s motivations if encryption does not take place, several behavioral characteristics bolster Talos’ confidence that ransomware may likely be the final objective. In these engagements adversaries were observed deploying frameworks such as Cobalt Strike and Mimikatz, alongside numerous enumeration and discovery techniques.  

Commodity malware, such as the Qakbot banking trojan, was observed in multiple engagements this quarter. In one engagement, several compromised endpoints were seen communicating with IP addresses associated with Qakbot C2 traffic. This activity coincides with a general resurgence of Qakbot and its delivery of emerging ransomware families and offensive security frameworks that we have not previously observed Qakbot deploy. This comes at a time where competing email-based botnets like Emotet and Trickbot have suffered continued setbacks from law enforcement and tech companies.  

Other threats this quarter include infostealers like Redline Stealer and Raccoon Stealer. Redline Stealer was observed across three engagements this quarter, two of which involved ransomware. The malware operators behind Raccoon introduced new functionality to the malware at the end of June, which likely contributed to its increased presence in engagements this quarter.  

As infostealers have continued to rank highly in CTIR engagements, let’s explore them in a bit more detail. 

Why infostealers proliferate  

Throughout the incidents discussed over the last few quarters, and CTIR engagements in general, information stealing plays a big part of the attackers’ TTPs.   

From a high level, infostealers can be used to gain access a variety of sensitive information, such as contact information, financial details, and even intellectual property. The adversaries involved often proceed to exfiltrate this information and may then attempt to sell it in dark web forums, threaten to release it if a ransom isn’t paid, among other things.  

While these instances can and do crop up in CTIR engagements, many of the infostealers seen in this space are used for accessing and collecting user credentials. Once an attacker has gained an initial foothold on a system, there are many places within an operating system that they can look for and collect credentials through the practice of credential dumping.   

These stolen credentials may be offered up for sale on the dark web, alongside the stolen information mentioned above, but they can also prove to be a key weapon in an attacker’s arsenal. Their usefulness lies in one simple concept—why force your way into a system when you can just log in?  

There are several advantages for bad actors that use this approach. Probably the most oblivious of these is that using pre-existing credentials is far more likely to go unnoticed than other more flagrant tactics an attacker can use. If part of the goal of an attack is to remain under the radar, activities carried out by “known users” are less likely to trigger security alerts when compared to tactics such as exploiting vulnerabilities or downloading malware binaries.  

Adversaries tend to seek credentials with higher privileges, allowing them further control over the systems they compromise, with those including administrative access being the crown jewels.  

User credentials can not only provide an attacker with means to elevate privileges and establish persistence on a system, but also to move laterally through a network. Some credentials, especially those with administrative privileges, can offer access to multiple systems throughout a network. By obtaining them, many more options become available to further an attack.  

Repeat offenders  

There are several threats involved in information stealing that appear repeatedly in CTIR engagements over the last few quarters.  

Perhaps the most notorious is Mimikatz—a tool used to pull credentials from operating systems. Mimikatz is not malware per-se and can be useful for penetration testing and red team activities. But bad actors leverage it as well, and over the last few quarters CTIR has observed it being used in ransomware-as-a-service attacks, as well as pre-ransomware incidents.   

CTIR has also observed Redline Stealer being utilized by adversaries in CTIR engagements across quarters. This infostealer has grown in popularity as a supplementary tool used alongside other malware. On more than one occasion, CTIR has identified stolen credentials on the dark web that claimed to have been obtained via Redline Stealer.  

Other information stealers seen across the last few quarters include the Vidar information stealer, Raccoon Stealer, and SolarMaker, all of which have been used to further an adversary’s attacks.   

Insider threats 

Over the last several months, Talos has seen an increasing number of engagements involving insider threats. In one engagement this quarter, passwords were reset through a management console of a perimeter firewall that a disgruntled employee had access to.   

The organization’s team changed all associated passwords but overlooked one administrative account. On the following day, someone logged in using that account, deleted all other accounts and firewall rules, and created one local account, likely to provide persistence.  

You’ll hear Alexis Merritt, Incident Response Consultant for Cisco Talos, talk about this more in the ThreatWise TV episode. 

To help protect against this threat when an individual leaves an organization, steps like disabling accounts and ensuring that connections to the enterprise remotely through VPN has been removed can be very valuable. Implementing a mechanism to wipe systems, especially for remote employees, is important as well.  

For more on this topic, Cisco Secure recently put together a white paper on the Insider Threat Maturity FrameWork.

How to protect  

In several incidents over the last few quarters that involved information stealers, multi-factor authentication (MFA) was not properly implemented by the organizations impacted, providing adversaries an opportunity to infiltrate the networks. MFA tools like Cisco Secure Access by Duo can prevent attackers from successfully gaining access. 

Connecting with Wolfgang Goerlich 

And finally, Cisco Advisory CISO Wolfgang Goerlich has created this storytelling video, to help people think about incident response in a new way: 


Join the Cisco Talos Incident Response team for a live debrief of the Q3 report on 27th October. 


We’d love to hear what you think. Ask a Question, Comment Below, and Stay Connected with Cisco Secure on social!

Cisco Secure Social Channels

Instagram
Facebook
Twitter
LinkedIn

New Malware Campaign Targeting Job Seekers with Cobalt Strike Beacons

By Ravie Lakshmanan
A social engineering campaign leveraging job-themed lures is weaponizing a years-old remote code execution flaw in Microsoft Office to deploy Cobalt Strike beacons on compromised hosts. "The payload discovered is a leaked version of a Cobalt Strike beacon," Cisco Talos researchers Chetan Raghuprasad and Vanja Svajcer said in a new analysis published Wednesday. "The beacon configuration contains

Wormable Flaw, 0days Lead Sept. 2022 Patch Tuesday

By BrianKrebs

This month’s Patch Tuesday offers a little something for everyone, including security updates for a zero-day flaw in Microsoft Windows that is under active attack, and another Windows weakness experts say could be used to power a fast-spreading computer worm. Also, Apple has also quashed a pair of zero-day bugs affecting certain macOS and iOS users, and released iOS 16, which offers a new privacy and security feature called “Lockdown Mode.” And Adobe axed 63 vulnerabilities in a range of products.

Microsoft today released software patches to plug at least 64 security holes in Windows and related products. Worst in terms of outright scariness is CVE-2022-37969, which is a “privilege escalation” weakness in the Windows Common Log File System Driver that allows attackers to gain SYSTEM-level privileges on a vulnerable host. Microsoft says this flaw is already being exploited in the wild.

Kevin Breen, director of cyber threat research at Immersive Labs, said any vulnerability that is actively targeted by attackers in the wild must be put to the top of any patching list.

“Not to be fooled by its relatively low CVSS score of 7.8, privilege escalation vulnerabilities are often highly sought after by cyber attackers,” Breen said. “Once an attacker has managed to gain a foothold on a victim’s system, one of their first actions will be to gain a higher level of permissions, allowing the attacker to disable security applications and any device monitoring. There is no known workaround to date, so patching is the only effective mitigation.”

Satnam Narang at Tenable said CVE-2022-24521 — a similar vulnerability in the same Windows log file component — was patched earlier this year as part of Microsoft’s April Patch Tuesday release and was also exploited in the wild.

“CVE-2022-37969 was disclosed by several groups, though it’s unclear if CVE-2022-37969 is a patch-bypass for CVE-2022-24521 at this point,” Narang said.

Another vulnerability Microsoft patched this month — CVE-2022-35803 — also seems to be related to the same Windows log file component. While there are no indications CVE-2022-35803 is being actively exploited, Microsoft suggests that exploitation of this flaw is more likely than not.

Trend Micro’s Dustin Childs called attention to CVE-2022-34718, a remote code execution flaw in the Windows TCP/IP service that could allow an unauthenticated attacker to execute code with elevated privileges on affected systems without user interaction.

“That officially puts it into the ‘wormable’ category and earns it a CVSS rating of 9.8,” Childs said. “However, only systems with IPv6 enabled and IPSec configured are vulnerable. While good news for some, if you’re using IPv6 (as many are), you’re probably running IPSec as well. Definitely test and deploy this update quickly.”

Cisco Talos warns about four critical vulnerabilities fixed this month — CVE-2022-34721 and CVE-2022-34722 — which have severity scores of 9.8, though they are “less likely” to be exploited, according to Microsoft.

“These are remote code execution vulnerabilities in the Windows Internet Key Exchange protocol that could be triggered if an attacker sends a specially crafted IP packet,” wrote Jon Munshaw and Asheer Malhotra. “Two other critical vulnerabilities, CVE-2022-35805 and CVE-2022-34700 exist in on-premises instances of Microsoft Dynamics 365. An authenticated attacker could exploit these vulnerabilities to run a specially crafted trusted solution package and execute arbitrary SQL commands. The attacker could escalate their privileges further and execute commands as the database owner.”

Not to be outdone, Apple fixed at least two zero-day vulnerabilities when it released updates for iOS, iPadOS, macOS and Safari. CVE-2022-32984 is a problem in the deepest recesses of the operating system (the kernel). Apple pushed an emergency update for a related zero-day last month in CVE-2022-32983, which could be used to foist malware on iPhones, iPads and Macs that visited a booby-trapped website.

Also listed under active attack is CVE-2022-32817, which has been fixed on macOS 12.6 (Monterey), macOS 11.7 (Big Sur), iOS 15.7 and iPadOS 15.7, and iOS 16. The same vulnerability was fixed in Apple Watch in July 2022, and credits Xinru Chi of Japanese cybersecurity firm Pangu Lab.

“Interestingly, this CVE is also listed in the advisory for iOS 16, but it is not called out as being under active exploit for that flavor of the OS,” Trend Micro’s Childs noted. “Apple does state in its iOS 16 advisory that ‘Additional CVE entries to be added soon.’ It’s possible other bugs could also impact this version of the OS. Either way, it’s time to update your Apple devices.”

Apple’s iOS 16 includes two new security and privacy features — Lockdown Mode and Safety Check. Wired.com describes Safety Check as a feature for users who are at risk for, or currently experiencing, domestic abuse.

“The tool centralizes a number of controls in one place to make it easier for users to manage and revoke access to their location data and reset privacy-related permissions,” wrote Lily Hay Newman.

“Lockdown Mode, on the other hand, is meant for users who potentially face targeted spyware attacks and aggressive state-backed hacking. The feature comprehensively restricts any nonessential iOS features so there are as few potential points of entry to a device as possible. As more governments and repressive entities around the world have begun purchasing powerful commodity spyware to target individuals of particular importance or interest, iOS’s general security defenses haven’t been able to keep pace with these specialized threats.”

To turn on Lockdown Mode in iOS 16, go to Settings, then Privacy and Security, then Lockdown Mode. Safety Check is located in the same area.

Finally, Adobe released seven patches addressing 63 security holes in Adobe Experience Manager, Bridge, InDesign, Photoshop, InCopy, Animate, and Illustrator. More on those updates is here.

Don’t forget to back up your data and/or system before applying any security updates. If you experience glitches or problems installing any of these patches this month, please consider leaving a comment about it below; there’s a decent chance other readers have experienced the same and may chime in here with useful tips.

Black Hat USA 2022: Creating Hacker Summer Camp

By Jessica Bair

In part one of this issue of our Black Hat USA NOC (Network Operations Center) blog, you will find:

  • Adapt and Overcome
  • Building the Hacker Summer Camp network, by Evan Basta
  • The Cisco Stack’s Potential in Action, by Paul Fidler
  • Port Security, by Ryan MacLennan, Ian Redden and Paul Fiddler
  • Mapping Meraki Location Data with Python, by Christian Clausen

Adapt and Overcome, by Jessica Bair Oppenheimer

In technology, we plan as best as we can, execute tactically with the resources and knowledge we have at the time, focus on the strategic mission, adjust as the circumstances require, collaborate, and improve; with transparency and humility. In short, we adapt and we overcome. This is the only way a community can have trust and grow, together. Every deployment comes with its challenges and Black Hat USA  2022 was no exception. Looking at the three Ps (people, process, platform), flexibility, communication, and an awesome Cisco platform allowed us to build and roll with the changes and challenges in the network. I am proud of the Cisco Meraki and Secure team members and our NOC partners.

The Buck Stops Here. Full stop. I heard a comment that the Wi-Fi service in the Expo Hall was “the worst I’ve ever experienced at a conference.” There were a lot of complaints about the Black Hat USA 2022 Wi-Fi network in the Expo Hall on 10 August. I also heard a lot of compliments about the network. Despite that the Wi-Fi and wired network was generally very good the most of the conference, and before my awesome colleagues share the many successes of designing, building, securing, managing, automating and tearing down one of the most hostile networks on Earth; I want to address where and how we adapted and what we did to fix the issues that arose, as we built an evolving, enterprise class network in a week.

First, a little history of how Cisco came to be the Official Network Provider of Black Hat USA 2022, after we were already successfully serving as the Official Mobile Device Management, Malware Analysis and Domain Name Service Provider. An Official Provider, as a Premium Partner, is not a sponsorship and no company can buy their way into the NOC for any amount of money. From the beginning of Black Hat 25 years ago, volunteers built the network for the conference rather than using the hotel network. This continues today, with the staff of Black Hat hand selecting trusted partners to build and secure the network.

After stepping up to help Black Hat with the network at Black Hat Asia, we had only two and a half months until Black Hat USA, in Las Vegas, 6-11 August 2022. Cisco was invited to build and secure the network for the much larger Black Hat USA flagship conference, affectionally known as ‘Hacker Summer Camp’, as the Official Network Equipment Provider. There were few other options, given the short timeframe to plan, supply chain difficulties in procuring the networking gear and assembling a team of network engineers, to join the Cisco Secure engineers and threat hunters. All the work, effort and loaned equipment were a gift from Cisco Meraki and Cisco Secure to the community.

We were proud to collaborate with NOC partners Gigamon, IronNet, Lumen, NetWitness and Palo Alto Networks; and work with Neil ‘Grifter’ Wyler, Bart Stump, Steve Fink and James Pope of Black Hat. We built strong bonds of familial ties over the years of challenges and joint successes. I encourage you to watch the replay of the Black Hat session An Inside Look at Defending the Black Hat Network with Bart and Grifter.

In June 2022, adjacent to Cisco Live Americas, the NOC partners met with Black Hat to plan the network. Cisco Meraki already donated 45 access points (APs), seven MS switches, and two Meraki MX security and SD-WAN appliances to Black Hat, for regional conferences.

I looked at the equipment list from 2019, that was documented in the Bart and Grifter presentation, and estimated we needed to source an additional 150 Cisco Meraki MR AP (with brackets and tripods) and 70+ Cisco Meraki MS switches to build the Black Hat USA network in just a few weeks. I wanted to be prepared for any changes or new requirements on-site. We turned to JW McIntire, who leads the network operations for Cisco Live and Cisco Impact. JW was enthusiastically supportive in helping identify the equipment within the Cisco Global Events inventory and giving his approval to utilize the equipment. A full thanks to those who made this possible is in the Acknowledgements below.

Over the week-long conference, we used all but three of the switches and all the APs.

We worked off the draft floor plans from 13 June 2022, for the training rooms, briefing rooms, support rooms, keynote rooms, conference public areas, registration, and of course the Expo Hall: over two million square feet of venue. We received updated plans for the training rooms, Expo Hall and support needs 12 days before we arrived on site. There were about 60 training rooms planned, each requiring their own SSID and Virtual Local Area Network, without host isolation. The ‘most access possible’ was the requirement, to use real world malware and attacks, without attacking other classrooms, attendees, sponsors or the rest of the world. Many of the training rooms changed again nine days before the start of the network build, as the number confirmed students rose or fell, we adjusted the AP assignments.

For switching allocation, we could not plan until we arrived onsite, to assess the conference needs and the placement of the cables in the walls of the conference center. The Black Hat USA network requires that every switch be replaced, so we always have full control of the network. Every network drop to place an AP and put the other end of a cable into the new switches in the closets costs Black Hat a lot of money. It also requires the time of ‘Doc’ – the lead network engineer at the Mandalay Bay, to whom we are all deeply grateful.

The most important mission of the NOC is Access, then Security, Visibility, Automation, etc. People pay thousands of dollars to attend the trainings and the briefings; and sponsors pay tens of thousands for their booth space. They need Access to have a successful conference experience.

With that background, let’s discuss the Wi-Fi in the Expo Hall. Cisco has a service to help customers do a methodical predictive survey of their space for the best allocation of their resources. We had 74 of the modern MR57 APs for the conference and prioritized their assignment in the Expo Hall and Registration. Specifications for MR57s include a 6 GHz 4×4:4, 5 GHz 4×4:4 and 2.4 GHz 4×4:4 radio to offer a combined tri–radio aggregate frame rate of 8.35 Gbps, with up to 4,804 Mbps in 6GHz band, 2,402 Mbps 5 GHz band and, 1,147 Mbps / 574 Mbps in the 2.4 GHz band based on 40MHz / 20MHz configuration. Technologies like transmit beamforming and enhanced receive sensitivity allow the MR57 to support a higher client density than typical enterprise-class access points, resulting in better performance for more clients, from each AP.

We donated top of the line gear for use at Black Hat USA. So, what went wrong on the first day in the Expo Hall? The survey came back with the following map and suggestions of 34 MR57s in the locations below. Many assumptions were made in pre-planning, since we did not know the shapes, sizes and materials of the booths that would be present inside the allocated spaces. We added an AP in the Arsenal Lab on the far-left side, after discussing the needs with Black Hat NOC leadership.

In the Entrance area (Bayside Foyer) of the Expo Hall (bottom of the map), you can see that coverage drops. There were four MR57s placed in the Bayside Foyer for iPad Registration and attendee Wi-Fi, so they could access their emails and obtain their QR code for scanning and badge printing.

I believed that would be sufficient and we allocated other APs to the rest of the conference areas. We had positive reports on coverage in most areas of the rest of the conference. When there were reported issues, we quickly deployed Cisco Meraki engineers or NOC technical associates. to confirm and were able to make changes in radio strength, broadcasting bands, SSIDs, etc. to fine tune the network. All while managing a large amount of new or changing network requirements, as the show expanded due to its success and was fully hybrid, with the increased streaming of the sponsored sessions, briefings and keynotes and remote Registration areas in hotels.

As the attendees queued up in mass outside of the Expo Hall on the morning of 10 August, the number of attendee devices connecting to the four MR57s in the foyer grew into the thousands. This degraded the performance of the Registration network. We adjusted by making the APs closest to the registration iPads only dedicated to the Registration. This fixed Registration lag but reduced the performance of the network for the attendees, as they waited to rush into the Expo Hall. From the site survey map, it is clear that the replacement APs were now needed in the Entrance for a connected mesh network, as you entered the Expo Hall from the Bayside foyer. Here lies Lesson 1: expected people flow should be taken into account in the RF design process.

Another challenge the morning of the Expo Hall opening was that five of the 57MRs inside were not yet connected to the Internet when it opened at 10am. The APs were installed three days earlier, then placed up on tripods the afternoon prior. However, the volume of newly requested network additions, to support the expanded hybrid element required the deployment of extra cables and switches. This cascaded down and delayed the conference center team from finalizing the Expo Hall line drops until into the afternoon. Lesson 2: Layer 1 is still king; without it, no Wi-Fi or power.

A major concern for the sponsors in their booths was that as the Expo Hall filled with excited attendees, the connectivity of the 900+ iOS devices used for lead management dropped. Part of this congestion was thousands of 2.4Ghz devices connected to the Expo Hall network. We monitored this and pushed as many as possible to 5Ghz, to relieve pressure on those airwaves. Lesson 3: With Wi-Fi 6e now available in certain countries, clean spectrum awaits, but our devices need to come along as well.

We also adjusted in the Cisco Meraki Systems Manager Mobile Device Management, to allow the iPhones for scanning to connect securely to the Mandalay Bay conference network, while still protecting your personal information with Cisco SecureX, Security Connector and Umbrella DNS, to ensure access as we expanded the network capacity in the Expo Hall. Lesson 4: Extreme security by default where you can control the end point. Do not compromise when dealing with PPI.

Using the Cisco Meraki dashboard access point location heat map and the health status of the network, we identified three places in the front of the Expo Hall to deploy additional drops with the Mandalay Bay network team. Since adding network drops takes some time (and costs Black Hat extra money), we took immediate steps to deploy more MS120 switches and eight additional APs at hot spots inside the Expo Hall with the densest client traffic, at no expense to Black Hat. Lesson 5: Footfall is not only about sales analytics. It does play a role into RF planning. Thereby, allowing for a data-driven design decision.

Above is the heat map of the conference Expo Hall at noon on 11 August. You can see the extra APs at the Entrance of the Expo Hall, connected by the three drops set up by the Mandalay Bay to the Cisco Meraki switches in the closets. Also, you can see the clusters of APs connected to the extra MS120 switches. At the same time, our lead Meraki engineer, Evan Basta, did a speed test from the center left of the Expo Hall.

As I am sharing lessons learned, I want to provide visibility to another situation encountered. On the afternoon of 9 August, the last day of training, a Black Hat attendee walked the hallways outside several training rooms and deliberately attacked the network, causing students and instructors not to be able to connect to their classes. The training rooms have host isolation removed and we designed the network to provide as much safe access as possible. The attacker took advantage of this openness, spoofed the SSIDs of the many training rooms and launched malicious attacks against the network.

We must allow real malware on the network for training, demonstrations and briefing sessions; while protecting the attendees from attack within the network from their fellow attendees and prevent bad actors from using the network to attack the Internet. It is a critical balance to ensure everyone has a safe experience, while still being able to learn from real world malware, vulnerabilities and malicious websites.

The attack vector was identified by a joint investigation of the NOC teams, initiated by the Cisco Meraki Air Marshal review. Note the exact same MAC addresses of the spoofed SSIDs and malicious broadcasts. A network protection measure was suggested by the Cisco Meraki engineering team to the NOC leadership. Permission was granted to test on one classroom, to confirm it stopped the attack, while not also disrupting the training. Lesson 6: The network-as-a-sensor will help mitigate issues but will not fix the human element.

Once confirmed, the measure was implemented network wide to return resiliency and access. The NOC team continued the investigation on the spoofed MAC addresses, using syslogs, firewall logs, etc. and identified the likely app and device used. An automated security alerting workflow was put in place to quickly identify if the attacker resumed/returned, so physical security could also intervene to revoke the badge and eject the attacker from the conference for violation of the Black Hat code of conduct.

I am grateful to the 20+ Cisco engineers, plus Talos Threat Hunters, deployed to the Mandalay Bay Convention Center, from the United States, Canada, Qatar and United Kingdom who made the Cisco contributions to the Black Hat USA 2022 NOC possible. I hope you will read on, to learn more lessons learned about the network and the part two blog about Cisco Secure in the NOC

Building the Hacker Summer Camp Network, by Evan Basta

It was the challenge of my career to take on the role of the lead network engineer for Black Hat USA. The lead engineer, who I replaced, was unable to travel from Singapore, just notifying us two weeks before we were scheduled to deploy to Las Vegas.

We prepared as much as possible before arrival, using the floor plans and the inventory of equipment that was ordered and on its way from the warehouse. We met with the Black Hat NOC leadership, partners and Mandalay Bay network engineers weekly on conference calls, adjusted what we could and then went to Black Hat, ready for a rapidly changing environment.

Our team was able to remain flexible and meet all the Black Hat requests that came in, thanks to the ability of the Cisco Meraki dashboard to manage the APs and switches from the cloud. Often, we were configuring the AP or switch as it was being transported to the location of the new network segment, laptop in hand.

For the construction of the Black Hat network, let’s start with availability. Registration and training rooms had priority for connectivity. iPads and iPhones needed secure connectivity to scan QR codes of registering attendees. Badge printers needed hardline access to the registration system. Training rooms all needed their separate wireless networks, for a safe sandbox for network defense and attack. Thousands of attendees attended, ready to download and upload terabytes of data through the main conference wireless network. All the keynotes, briefings and sponsored sessions needed to be recorded and streamed. Below are all the APs stacked up for assignment, including those assigned to the Expo Hall in the foreground.

All this connectivity was provided by Cisco Meraki access points and switches along with integrations into SecureX, Umbrella, and other Cisco platforms. We fielded a literal army of engineers to stand up the network in six days.

Let’s talk security and visibility. For a few days, the Black Hat network is one of the most hostile in the world. Attendees learn new exploits, download new tools, and are encouraged to test them out. Being able to drill down on attendee connection details and traffic was instrumental in ensuring attendees followed the Black Hat code of conduct.

On the wireless front, we made extensive use of our Radio Profiles to reduce interference by tuning power and channel settings. We enabled band steering to get more clients on the 5GHz bands versus 2.4GHz and watched the Location Heatmap like a hawk looking for hotspots and dead areas. Handling the barrage of wireless change requests – enable or disabling this SSID, moving VLANs (Virtual Local Area Networks), enabling tunneling for host isolation on the general conference Wi-Fi, mitigating attacks – was a snap with the Cisco Meraki Dashboard.

Floor Plan and Location Heatmap

On the first day of NOC setup, the Cisco team worked with the Mandalay Bay networking engineers to deploy core switches and map out the switches for the closets, according to the number of cables coming in from the training and briefing rooms. The floor plans in PDF were uploaded into the Meraki Dashboard; and with a little fine tuning, aligned perfectly with the Google Map.

Cisco Meraki APs were then placed physically in the venue meeting and training rooms. Having the APs named, as mentioned above, made this an easy task. This enabled accurate heatmap capability.

The Location Heatmap provided the capability to drill into the four levels of the conference, including the Expo Hall, lower level (North Conference Center), 2nd Floor and 3rd Floor. Below is the view of the entire conference.

Network Visibility

We were able to monitor the number of connected clients, network usage, the people passing by the network and location analytics, throughout the conference days. We provided visibility access to the Black Hat NOC management and the technology partners, along with full API (Application Programming Interface) access, so they could integrate with the network platform.

Alerts

Cisco Meraki alerts provide notification when something happens in the Dashboard. Default behavior is to be emailed when something happens. Obviously, emails got lost in the noise, at Black Hat Asia 2022, we made a web hook in Cisco SecureX orchestration to be able to consume Cisco Meraki alerts and send it to Slack (the messaging platform within the Black Hat NOC), using the native template in the Cisco Meraki Dashboard.

The alert kicked off if an AP or a switch lost connectivity. At Black Hat USA, we modified this to text alerts, as these were a priority. In the following example, we knew at the audio-visual team unplugged a switch to move it and were able to deploy technical associates from the NOC to ensure it was reconnected properly.

The Cisco Stack’s Potential in Action, by Paul Fidler

As we planned for Black Hat USA, the number of iOS devices to manage and protect rose from 300+ to over 900, and finally over 1,000.

The first amongst these was the use of the Cisco Meraki API. We were able to import the list of MAC addresses of the Cisco Meraki APs, to ensure that the APs were named appropriately and tagged, using a single source of truth document shared with the NOC management and partners, with the ability to update en masse at any time. Over three quarters of the AP configuration was able to be completed before arriving on site. 

Meraki Systems Manager – Initial device enrollment and provisioning

We’ll start with the positive: When it comes to creating the design to manage X number of devices, it doesn’t matter if it’s 10 devices, or 10,000… And this was certainly true for Black Hat. The requirements were straightforward:

  • Have several apps installed on devices, which each had a particular role
  • Have a passcode policy on some devices
  • Use home screen layout to help the conferences associates know which app to use
  • Use Name synchronization, so that the name of the device (on a label on the back) was also in the SM dashboard and under Settings > General > About
  • Use restrictions to prevent modification of accounts, Wi-Fi and prevention of screenshots (to protect the personal information of attendees)
  • Prevent the devices from having their management profile removed
  • Ensure that the devices could connect to the initial WPA based network, but then also to the 802.1x based network (using certificates)

All this configuration was done ahead of time in the Meraki Dashboard, almost a month before the conference.

Now the negatives: Of all the events that the company who supplies the devices attends; Black Hat is the only one where devices are managed. Using mass deployment techniques like Apple’s Automated Device Enrollment, therefore, is not used. The company pre-stages the devices using Apple Configurator, which allows for both Supervision and Enrollment.

It became more difficult: Whilst the pre-staged devices were fine (other than having to handle all 1,000+ devices to turn Wi-Fi to Autojoin and opening the Meraki Systems Manager app [to give us Jailbreak and Location visibility]), an extra 100 devices were supplied that were not enrolled. As these devices were enrolled elsewhere from the prior Black Hat conferences, a team of around 10 people pitched in to restore each device, adding the Wi-Fi profile and then enrollment.

Fortunately, Apple Configurator can create Blueprints:

A Blueprint is essential a list of actions, in a particular order, that Apple Configurator can run through autonomously

But why did it need a team of ten? There were several limitations:

  • Number of USB ports on a computer
  • Number in USB-A to USB-C converters (the devices were supplied with USB-A cables)
  • Downloading of the restore image (although Airdrop was used to distribute the image quickly)
  • Speed of the devices to do the restore (the actual Wi-Fi and enrollment steps take less than 10 seconds)

However, the task was completed in around three hours, given the limitations! If there’s one lesson to learn from this: Use Apple’s Automated Device Enrollment. 

Command vs Profile

One of the slight nuances of Apple Mobile Device Manager is the difference between a ‘command’ and ‘profile’. Within the Meraki Systems Manager dashboard, we don’t highlight the difference between the two. But it’s important to know. A ‘profile’ is something that remains on the device: If there’s a state change on the device, or the user attempts something, the profile is always on there. However, a ‘command’ is exactly that: It’s sent once, and if something changes in the future, then the command won’t have any effect.

So, why is this highlighted here? Well, in some instances, some apps weren’t pushed successfully: You’d see them on the device, but with a cloud icon next to them. The only way to resolve this would be to remove the app, and then repost it. But we were also using a Homepage Layout, which put various apps on various pages. Pushing the app would result in it appearing on the wrong page. To ensure a consistent user experience, we would push the homepage profile again to devices to take effect.

Meraki BSSID Geolocation

We’ve mentioned this before in past Black Hat events, but, given the scale of The Mandalay Bay, it’s important to circle back to this. GPS is notoriously unreliable in conference centers like this, but it was still important to know where devices are. Because we’d ensured the correct placement of the Access Points on the floor plan, and because Systems Manager was in the same organisation, it ensured that the devices reported their location accurately! If one were to ‘walk’ we could wipe it remotely to protect your personal details.

Protection of PPI (Protected Private Information)

When the conference Registration closed on the last day and the Business Hall Sponsors all returned their iPhones, we were able to remotely wipe all the devices, removing all attendee data, prior to returning to the device contractor.

APIs

As mentioned elsewhere in this blog, this was a conference of APIs. Just the sheer scale of the conference resulted in the use of APIs. Various API projects included:

  • Getting any ports down events with the getNetworkEvents API call
  • Getting the port status of switches with a given tag with getDeviceSwitchPorts
  • Turning off all the Training SSIDs in one go with getNetworkWirelessSsids and updateNetworkWirelessSsids
  • From a CSV, claiming devices into various networks with tags being applied with claimNetworkDevices and updateDevice (to name it)
  • Creation of networks from CSV with createOrganizationNetwork
  • Creation of SSIDs from CSV with updateNetworkWirelessSsids: This was to accommodate the 70+ SSIDs just for training! This also included the Tag for the SSIDs
  • Adding the Attendee SSID to every training network with updateNetworkWirelessSsids: This was due to us having several networks to accommodate the sheer number of SSIDs
  • Amending the Training SSIDs with the correct PSK using updateNetworkWirelessSsids

From a Systems Manager perspective, there were:

  • The renaming of devices from CSV: Each of the devices had a unique code on the back which was NOT the serial number. Given that it’s possible to change the name of the device on the device with Systems Manager, this meant that the number could be seen on the lock screen too. It also made for the identical of devices in the Systems Manager dashboard quick and easy too. The last thing you want is 1,000 iPhones all called “iPhone!”

Port Security, by Ryan MacLennan, Ian Redden and Paul Fidler

During the Cisco Meraki deployment, we had a requirement to shutdown ports as they went inactive to prevent malicious actors from removing an official device and plugging in theirs. This ability is not directly built into the Cisco Meraki dashboard, so we built a workflow for the Black Hat customer, using the Cisco Meraki API. To achieve this, we created a small python script that was hosted as an AWS (Amazon Web Services) Lambda function and listened for webhooks from the Cisco Meraki Dashboard when a port went down. Initially this did solve our issue, but it was not fast enough, about five minutes from the time the port went down/a cable was unplugged. This proof of concept laid the groundwork to make the system better. We migrated from using a webhook in the Cisco Meraki Dashboard to using syslogs. We also moved the script from Lambda to a local server. Now, a python script was scanning for syslogs from the switches and when it saw a port down log, it will immediately call out to the locally hosted python script that calls out to the Cisco Meraki API and disabled the port.

This challenge had many setbacks and iterations while it was being built. Before we settled on listening for syslogs, we tried using SNMP polling. After figuring out the information we needed to use, we found that trying to poll SNMP would not work because SNMP would not report the port being down if the switch to another device was fast enough. This led us to believe we might not be able to do what we needed in a timely manner. After some deliberation with fellow NOC members, we started working on a script to listen for the port down syslogs. This became the best solution and provided immediate results. The ports would be disabled within milliseconds of going downThe diagram below shows an example of what will happen: If the Workshop Trainer’s device is un-plugged and a Threat Actor tries to plug into their port, a syslog is sent from the Cisco Meraki switch to our internal server hosting the python listener. Once the python script gets the request, it sends an API call to the Cisco Meraki API gateway and the Cisco Meraki cloud then tells the switch to disable the port that went down very briefly.

However, what was apparent was that the script was working TOO well! As discussed, several times already in this blog, the needs of the conference were very dynamic, changing on a minute-by-minute basis. This was certainly true in Registration and with the Audio-Visual teams. We discovered quickly that legitimate devices were being unplugged and plugged in to various ports, even if just temporarily. Of course, the script was so quick that it disabled ports before the users in registration knew what was happening. This resulted in NOC staff having to re-enable ports. So, more development was done. The task? For a given network tag, show the status of all the ports of all the switches. Given the number of switches at the conference, tags were used to reduce the amount of data being brought back, so it was easier to read and manage.

Mapping Meraki Location Data with Python, by Christian Clausen

In the blog post we published after Black Hat Asia 2022, we provided details on how to collect Bluetooth and Wi-Fi scanning data from a Meraki organization, for long-term storage and analysis. This augmented the location data provided by the Meraki dashboard, which is limited to 24-hours. Of course, the Meraki dashboard does more than just provide location data based on Wi-Fi and Bluetooth scanning from the access points. It also provides a neat heatmap generated from this data. We decided to take our long-term data project a step further and see if we could generate our own heatmap based on the data collected from the Meraki Scanning API.

The Folium Python library “builds on the data wrangling strengths of the Python ecosystem and the mapping strengths of the leaflet.js library” to provide all kinds of useful mapping functions. We can take location data (longitude and latitude) and plot them on lots of built-in map tiles from the likes of OpenStreetMap, MapBox, Stamen, and more. Among the available Folium plugins is a class called “HeatMapWithTime.” We can use this to plot our Meraki location data and have the resulting map animate the client’s movements.

Step 1: Collect the data

During the previous conference, we used a Docker container containing a couple Flask endpoints connected via ngrok to collect the large amount of data coming from Meraki. We re-used the same application stack this time around, but moved it out from behind ngrok into our own DMZ with a public domain and TLS (Transport Layer Security) certificate, to avoid any bandwidth limitations. We ended up with over 40GB of JSON data for the conference week to give to Black Hat!

Step 2: Format the data

Folium’s HeatMapWithTime plugin requires a “list of lists of points of time.” What we wanted to do is generate an ordered dictionary in Python that is indexed by the timestamp. The data we received from the Meraki API was formatted into “apFloor” labels provided by the admin when the access points are placed. Within each “apFloor” is a list of “observations” that contain information about individual clients spotted by the AP scanners, during the scanning interval.

Here’s what the data looked like straight from the Meraki API, with some dummy values:

The “observations” list is what we wanted to parse. It contains lots of useful information, but what we wanted is MAC address, latitude and longitude numbers, and timestamp:

We used Python to iterate through the observations and to eliminate the data we did not use. After a lot of data wrangling, de-duplicating MAC addresses, and bucketizing the observations into 15-minute increments, the resulting data structure looks like this:

Now that the data is in a usable format, we can feed it into Folium and see what kind of map we get back!

Step 3: Creating the map

Folium is designed to project points onto a map tile. Map tiles can show satellite images, streets, or terrain, and are projected onto a globe. In our case, however, we want to use the blueprint of the conference center. Folium’s allows for an image’s overlay to be added, and the bounds of the image to be set by specifying the coordinates for the top-left and bottom-right corners of image. Luckily, we can get this from the Meraki dashboard.  

This enabled us to overlay the floorplan image on the map. Unfortunately, the map tiles themselves limit the amount of zoom available to the map visualization. Lucky for us, we did not care about the map tile now that we have the floorplan image. We passed “None” as the map tile source and finally received our data visualization and saved the map as an HTML file for Black Hat leadership.

We opened the HTML file, and we had an auto-playing heatmap that lets us zoom at far in as we want:

Detail at 1:30pm PT, on 10 August 2022 below.

To improve this going forward, the logical next steps would be to insert the data into a database for the Black Hat conference organizers, for quick retrieval and map generation. We can then start looking at advanced use-cases in the NOC, such as tracking individual a MAC address that may be producing suspicious traffic, by cross-referencing data from other sources (Umbrella, NetWitness, etc.).

——————————————————————————————————

Network Recovery, by Jessica Bair Oppenheimer

Once the final session ended, the Expo Hall closed and the steaming switched off, dozens of conference associates, technical associates, Mandalay Bay engineers and Cisco staff spread out through two million square feet and numerous switching closets to recover the equipment for inventory and packing. It took less than four hours to tear down a network that was built and evolved 11 days prior. Matt Vander Horst made a custom app to scan in each item, separating equipment donated to Black Hat from that which needed to be returned to the warehouse for the next global Cisco event.

Adapt and overcome! Check out part two of this blog, Black Hat USA 2022 Continued: Innovation in the NOC.

Until then, thanks again to our Cisco Meraki engineers, pictured below with a MR57 access point.

Acknowledgements: Special thanks to the Cisco Meraki and Cisco Secure Black Hat NOC team.

Meraki Systems Manager: Paul Fidler (team leader), Paul Hasstedt and Kevin Carter

Meraki Network Engineering: Evan Basta (team leader), Gregory Michel, Richard Fung and CJ Ramsey

Network Design and Wireless Site Survey: Jeffry Handal, Humphrey Cheung, JW McIntire and Romulo Ferreira

Network Build/Tear Down: Dinkar Sharma, Ryan Maclennan, Ron Taylor and Leo Cruz

Critical support in sourcing and delivering the Meraki APs and switches: Lauren Frederick, Eric Goodwin, Isaac Flemate, Scott Pope and Morgan Mann

SecureX threat response, orchestration, device insights, custom integrations, and Malware Analytics: Ian Redden, Aditya Sankar, Ben Greenbaum, Matt Vander Horst and Robert Taylor

Umbrella DNS: Christian Clasen and Alejo Calaoagan

Talos Incident Response Threat Hunters: Jerzy ‘Yuri’ Kramarz and Michael Kelley

Also, to our NOC partners NetWitness (especially David Glover), Palo Alto Networks (especially Jason Reverri), Lumen, Gigamon, IronNet, and the entire Black Hat / Informa Tech staff (especially Grifter ‘Neil Wyler’, Bart Stump, Steve Fink, James Pope, Jess Stafford and Steve Oldenbourg).

Read Part 2:

Black Hat USA 2022 Continued: Innovation in the NOC

About Black Hat

For 25 years, Black Hat has provided attendees with the very latest in information security research, development, and trends. These high-profile global events and trainings are driven by the needs of the security community, striving to bring together the best minds in the industry. Black Hat inspires professionals at all career levels, encouraging growth and collaboration among academia, world-class researchers, and leaders in the public and private sectors. Black Hat Briefings and Trainings are held annually in the United States, Europe and USA. More information is available at: blackhat.com. Black Hat is brought to you by Informa Tech.


We’d love to hear what you think. Ask a Question, Comment Below, and Stay Connected with Cisco Secure on social!

Cisco Secure Social Channels

Instagram
Facebook
Twitter
LinkedIn

Black Hat USA 2022 Continued: Innovation in the NOC

By Jessica Bair

In part one of our Black Hat USA 2022 NOC blog, we discussed building the network with Meraki:

  • Adapt and Overcome
  • Building the Hacker Summer Camp network, by Evan Basta
  • The Cisco Stack’s Potential in Action, by Paul Fidler
  • Port Security, by Ryan MacLennan, Ian Redden and Paul Fiddler
  • Mapping Meraki Location Data with Python, by Christian Clausen

In this part two, we will discuss:

  • Bringing it all together with SecureX
  • Creating Custom Meraki Dashboard Tiles for SecureX, by Matt Vander Horst
  • Talos Threat Hunting, by Jerzy ‘Yuri’ Kramarz and Michael Kelley
  • Unmistaken Identity, by Ben Greenbaum
  • 25+ Years of Black Hat (and some DNS stats), by Alejo Calaoagan

Cisco is a Premium Partner of the Black Hat NOC, and is the Official Wired & Wireless Network Equipment, Mobile Device Management, DNS (Domain Name Service) and Malware Analysis Provider of Black Hat.

Watch the video: Building and Securing the Black Hat USA Network

Black Hat USA is my favorite part of my professional life each year. We had an incredible staff of 20 Cisco engineers to build and secure the network. Also, for the first time, we had two Talos Threat Hunters from the Talos Incident Response (TIR) team, providing unique perspectives and skills to the attacks on the network. I really appreciated the close collaboration with the Palo Alto Networks and NetWitness team members. We created new integrations and the NOC continued to serve as an incubator for innovation.

We must allow real malware on the network for training, demonstrations, and briefing sessions; while protecting the attendees from attack within the network from their fellow attendees and prevent bad actors using the network to attack the Internet. It is a critical balance to ensure everyone has a safe experience, while still being able to learn from real world malware, vulnerabilities, and malicious websites. So, context is what really matters when investigating a potential attack and bringing so many technologies together in SecureX really accelerated investigation and response (when needed).

All the Black Hat network traffic was supported by Meraki switches and wireless access points, using the latest Meraki gear donated by Cisco. Our Meraki team was able to block people from the Black Hat network, when an investigation showed they did something in violation of the attendee Code of Conduct, upon review and approval by the Black Hat NOC leadership.

Cisco Secure provided all the domain name service (DNS) requests on the Black Hat network through Umbrella, whenever attendees wanted to connect to a website. If there is a specific DNS attack that threatened the conference, we supported Black Hat in blocking it to protect the network. However, by default, we allow and monitor DNS requests to malware, command and control, phishing, crypto mining, and other dangerous domains, which would be blocked in a production environment. That balance of allowing cybersecurity training and demos to occur, but ready to block when needed.

In addition to the Meraki networking gear, Cisco Secure also shipped an Umbrella DNS virtual appliance to Black Hat USA, for internal network visibility with redundancy. The Intel NUC containing the virtual appliance also contained the bridge to the NetWitness on-premises SIEM, custom developed by Ian Redden.

We also deployed the following cloud-based security software:

We analyzed files that were downloaded on the network, checking them for malicious behavior. When malware is downloaded, we confirm it is for a training, briefing or demonstration, and not the start of an attack on attendees.

During an investigation, we used SecureX to visualize the threat intelligence and related artifacts, correlating data. In the example below, an attacker was attempting remote code execution on the Registration Servers, alerted by the Palo Alto team, investigated by the NOC threat hunters, and blocked by order of the NOC leadership upon the results of the investigation.

Cisco Secure Threat Intelligence (correlated through SecureX)

Donated Partner Threat Intelligence (correlated through SecureX)

Open-Source Threat Intelligence (correlated through SecureX)

Continued Integrations from past Black Hat events

  • NetWitness SIEM integration with SecureX
  • NetWitness PCAP file carving and submission to Cisco Secure Malware Analytics (formerly Threat Grid) for analysis
  • Meraki syslogs into NetWitness SIEM and Palo Alto Firewall
  • Umbrella DNS into NetWitness SIEM and Palo Alto Firewall 

New Integrations Created at Black Hat USA 2022

  • Secure Malware Analytics integration with Palo Alto Cortex XSOAR, extracting files from the network stream via the firewall

The NOC partners, especially NetWitness and Palo Alto Networks, were so collaborative and we left Vegas with more ideas for future integration development

Creating Custom Meraki Dashboard Tiles for SecureX, by Matt Vander Horst

One of the biggest benefits of Cisco SecureX is its open architecture. Anyone can build integrations for SecureX if they can develop an API with the right endpoints that speak the right language. In the case of SecureX, the language is the Cisco Threat Intelligence Model (CTIM). As mentioned above, Cisco Meraki powered Black Hat USA 2022 by providing wired and wireless networking for the entire conference. This meant a lot of equipment and users to keep track of. To avoid having to switch between two different dashboards in the NOC, we decided to build a SecureX integration that would provide Meraki dashboard tiles directly into our single pane of glass: SecureX.

Building an integration for SecureX is simple: decide what functionality you want your integration to offer, build an internet-accessible API that offers those functions, and then add the integration to SecureX. At Black Hat, our Meraki integration supported two capabilities: health and dashboard. Here’s a summary of those capabilities and the API endpoints they expect:

Capability Description API Endpoints
Health Enables SecureX to make sure the module is reachable and working properly. /health
Dashboard Provides a list of available dashboard tiles and, after a tile is added to a dashboard, the tile data itself. /tiles

/tile-data

 

With our capabilities decided, we moved on to building the API for SecureX to talk to. SecureX doesn’t care how you build this API if it has the expected endpoints and speaks the right language. You could build a SecureX-compatible API directly into your product, as a serverless Amazon Web Services (AWS) Lambda, as a Python script with Django, and so on. To enable rapid development at Black Hat, we chose to build our integration API on an existing Ubuntu server in AWS running Apache and PHP.

After building the API framework on our AWS server, we had to decide which dashboard tiles to offer. Here’s what we ended up supporting:

Tile Name Description
Top Applications Shows the top 10 applications by flow count
Client Statistics Shows a summary of clients
Top SSIDs by Usage in GB Shows the top 10 SSIDs by data usage in GB
Access Point Status Shows a summary of access points

 

Finally, once the API was up and running, we could add the integration to SecureX. To do this, you need to create a module definition and then push it to SecureX using its IROH-INT API. After the module is created, it appears in the Available Integration Modules section of SecureX and can be added. Here’s what our module looked like after being added to the Black Hat SecureX instance:

After adding our new tiles to the SecureX dashboard, SecureX would ask our API for data. The API we built would fetch the data from Meraki’s APIs, format the data from Meraki for SecureX, and then return the formatted data. Here’s the result:

These dashboard tiles gave us useful insights into what was going on in the Meraki network environment alongside our existing dashboard tiles for other products such as Cisco Secure Endpoint, Cisco Umbrella, Cisco Secure Malware Analytics, and so on.

If you want to learn more about building integrations with SecureX, check out these resources:

Talos Threat Hunting, by Jerzy ‘Yuri’ Kramarz and Michael Kelly

Black Hat USA 2022 was our first fully supported event, where we deployed an onsite threat hunting team from Talos Incident Response (TIR). Our colleagues and friends from various business units, connected by SecureX integration, granted us access to all the underlying consoles and API points to support the threat hunting efforts enhanced by Talos Intelligence.

The threat hunting team focused on answering three key hypothesis-driven questions and matched that with data modelling across all of the different technology stacks deployed in Black Hat NOC:

  • Are there any attendees attempting to breach each other’s systems in or outside of a classroom environment?
  • Are there any attendees attempting to subvert any NOC Systems?
  • Are there any attendees that are compromised and we could warn them about that?

To answer the above hypothesis, our analysis started with understanding of how the network architecture is laid out and what kind of data access is granted to NOC. We quickly realized that our critical partners are key to extending visibility beyond Cisco deployed technologies. Great many thanks go to our friends from NetWitness and Palo Alto Networks for sharing full access to their technologies, to ensure that hunting did not stop on just Cisco kit and contextual intelligence could be gathered across different security products.

Daily threat hunt started with gathering data from Meraki API to identify IP and DNS level requests leaving the devices connected to wireless access points across entire conference. Although Meraki does not directly filter the traffic, we wanted to find signs of malicious activity such as DNS exfiltration attempts or connections to known and malicious domains which were not part of the class teaching. Given the level of access, we were then able to investigate network traffic capture associated with suspicious connections and check for suspected Command and Control (C2) points (there were a few from different threat actors!) or attempts to connect back to malicious DNS or Fast Flux domains which indicated that some of the attendee devices were indeed compromised with malware.

That said, this is to be expected given hostility of the network we were researching and the fact that classroom environments have users who can bring their own devices for hands-on labs. SecureX allowed us to quickly plot this internally to find specific hosts which were connecting and talking with malicious endpoints while also showing a number of additional datapoints which were useful for the investigation and hunting. Below is one such investigation, using SecureX threat response.

While looking at internal traffic, we have also found and plotted quite a few different port-scans running across the internal network. While not stopping these, it was interesting to see different tries and attempts by students to find ports and devices across networks. Good thing that network isolation was in place to prevent that! We blurred out the IP and MAC addresses in the image below.

Here is another example of really nice port scan clusters that were running across both internal and external networks we have found. This time it was the case of multiple hosts scanning each other and looking to discovery ports locally and across many of the Internet-based systems. All of that was part of the class but we had to verify that as it looked quite suspicious from the outset. Again, blurred picture for anonymity.

In a few instances, we also identified remarkably interesting clear-text LDAP traffic leaving the environment and giving a clear indicator of which organization the specific device belonged to simply because of the domain name which was requested in the cleartext. It was quite interesting to see that in 2022, we still have a lot of devices talking clear text protocols such as POP3, LDAP, HTTP or FTP, which are easy to subvert via Man-In-The-Middle type of attacks and can easily disclose the content of important messages such as email or server credentials. Below is an example of the plain text email attachments, visible in NetWitness and Cisco Secure Malware Analytics.

In terms of the external attacks, Log4J exploitation attempts were pretty much a daily occurrence on the infrastructure and applications used for attendee registration along with other typical web-based attacks such as SQL injections or path traversals. Overall, we saw a good number of port scans, floods, probes and all kind of web application exploitation attempts showing up daily, at various peak hours. Fortunately, all of them were successfully identified for context (is this part of a training class or demonstration) and contained (if appropriate) before causing any harm to external systems. Given the fact that we could intercept boundary traffic and investigate specific PCAP dumps, we used all these attacks to identify various command-and-control servers for which we also hunted internally to ensure that no internal system is compromised.

The final piece of the puzzle we looked to address, while threat hunting during Black Hat 2022, was automation to discover interesting investigation avenues. Both of us investigated a possibility of threat hunting using Jupyter playbooks to find outliers that warrant a closer look. We have created and developed a set of scripts which would gather the data from API endpoints and create a data frames which could be modeled for further analysis. This allowed us to quickly gather and filter out systems and connections which were not that interesting. Then, focus on specific hosts we should be checking across different technology stacks such as NetWitness and Palo Alto.

Unmistaken Identity, by Ben Greenbaum

An unusual aspect of the Black Hat NOC and associated security operations activities is that this is an intentionally hostile network. People come to learn new tricks and to conduct what would in any other circumstance be viewed rightfully as malicious, unwanted behavior. So, determining whether this is “acceptable” or “unacceptable” malicious behavior is an added step. Additionally, this is a heavily BYOD environment and while we do not want attendees attacking each other, or our infrastructure, there is a certain amount of suspicious or indicative behavior we may need to overlook to focus on higher priority alerts.

In short, there are broadly speaking 3 levels of security event at Black Hat:

  • Allowed – classroom or demonstration activities; i.e. a large part of the purpose of Black Hat
  • Tolerated –C&C communications from BYOD systems, other evidence of infections that are not evidence of direct attacks; attendee cleartext communications that should be encrypted, but are not relevant to the operation of the conference.
  • Forbidden – direct attacks on attendees, instructors, or infrastructure; overt criminal activity, or other violations of the Code of Conduct

When Umbrella alerted us (via a SecureX orchestration Webex workflow) of DNS requests for a domain involved in “Illegal Activity” it was reminiscent of an event at a previous conference where an attendee was caught using the conference network to download forged vaccination documents.

Using the Cisco Secure Malware Analytics platform’s phishing investigation tools, I loaded and explored the subject domain and found it to be a tool that generates and provides pseudo-randomized fake identities, customizable in various ways to match on demographics. Certainly, something that could be used for nefarious purposes, but is not illegal in and of itself. Physical security and access control is, however, also important at Black Hat, and if this activity was part of an effort to undermine that, then this was still a concern.

This is, however, also the kind of thing that gets taught at Black Hat…

Using the reported internal host IP from Umbrella, Meraki’s connection records, and the Meraki access point map, we were able to narrow the activity down to a specific classroom. Looking up what was being taught in that room, we were able to confirm that the activity was related to the course’s subject matter

Network owners and administrators, especially businesses, typically don’t want their network to be used for crimes. However, here at Black Hat what some would consider “crimes” is just “the curriculum”. This adds a layer of complexity to securing and protecting not just Black Hat, but also Black Hat attendees. In security operations, not every investigation leads to a smoking gun. At Black Hat, even when it does, you may find that the smoking gun was fired in a safe manner at an approved target range. Having the right tools on hand can help you make these determinations quickly and free you up to investigate the next potential threat.

25 Years of Black Hat – Musings from the show (and some DNS stats), by Alejo Calaoagan

Back in Singapore, I wrote about cloud app usage and the potential threat landscape surrounding them.  My original plan at Black Hat USA was to dig deeper into this vector to see what interesting tidbits I could find on our attendee network. However, given that this was the 25th anniversary of Black Hat (and my 14th in total between Vegas, Singapore, and London), I’ve decided to pivot to talk about the show itself.

I think it’s safe to say, after two difficult pandemic years, Black Hat is back. Maybe it’s the fact that almost everyone has caught COVID by now (or that a lot of people just stopped caring). I caught it myself at RSA this year back in June, the first of consecutive summer super spread events (Cisco Live Vegas was the following week). Both of those shows were in the 15-18k attendee range, well below their pre-pandemic numbers. Black Hat USA 2022 was estimated at 27,000 attendees.

If I remember correctly, 2019 was in the 25-30K range. Last year in Vegas, there were ~3,000 people at the event, tops. 2021 in London, was even lower…it felt like there were less than 1,000 attendees. Things certainly picked up in Singapore (2-3k attendees), though that event doesn’t typically see attendee numbers as high as the other locations. All in all, while the pandemic certainly isn’t over, Las Vegas gave glimpses of what things were like before the “Rona” took over our lives.

The show floor was certainly back to the norm, with swag flying off the countertops and lines for Nike sneaker and Lego giveaways wrapping around different booths.  The smiles on people’s faces as they pitched, sold, hustled, and educated the masses reminded me how much I missed this level of engagement.  RSA gave me this feeling as well, before COVID sidelined me midway through the show anyway.

Not everything was quite the same. The Black Hat party scene certainly is not what it used to be. There was no Rapid 7 rager this year or last, or a happy hour event thrown by a security company you’ve never heard of at every bar you walk by on the strip. There were still some good networking events here and there, and there were some awesomely random Vanilla Ice, Sugar Ray, and Smashmouth shows. For those of you familiar with Jeremiah Grossman’s annual Black Hat BJJ throwdown, that’s still, thankfully, a thing. Hopefully, in the coming years, some of that old awesomeness returns….

Enough reminiscing, here are our DNS numbers from the show:

From a sheer traffic perspective, this was the busiest Black Hat ever, with over 50 million DNS requests made…

Digging into these numbers, Umbrella observed over 1.3 million security events, including various types of malware across the attendee network. Our threat hunting team was busy all week!

We’ve also seen an increase in app usage at Black Hat:

  • 2019: ~3,600
  • 2021: ~2,600
  • 2022: ~6,300

In a real-world production environment, Umbrella can block unapproved or high-risk apps via DNS.

The increases in DNS traffic volume and Cloud App usage obviously mirrors Black Hat’s return to the center stage of security conferences, following two years of pandemic uncertainty. I’m hopeful that things will continue to trend in a positive direction leading up to London and, hopefully, we’ll see you all there.

——

Hats off to the entire NOC team. Check out Black Hat Europe in London, 5-8 December 2022!

Acknowledgements: Special thanks to the Cisco Meraki and Cisco Secure Black Hat NOC team.

SecureX threat response, orchestration, device insights, custom integrations and Malware Analytics: Ian Redden, Aditya Sankar, Ben Greenbaum, Matt Vander Horst and Robert Taylor

Umbrella DNS: Christian Clasen and Alejo Calaoagan

Talos Incident Response Threat Hunters: Jerzy ‘Yuri’ Kramarz and Michael Kelley

Meraki Systems Manager: Paul Fidler (team leader), Paul Hasstedt and Kevin Carter

Meraki Network Engineering: Evan Basta (team leader), Gregory Michel, Richard Fung and CJ Ramsey

Network Design and Wireless Site Survey: Jeffry Handal, Humphrey Cheung, JW McIntire and Romulo Ferreira

Network Build/Tear Down: Dinkar Sharma, Ryan Maclennan, Ron Taylor and Leo Cruz

Critical support in sourcing and delivering the Meraki APs and switches: Lauren Frederick, Eric Goodwin, Isaac Flemate, Scott Pope and Morgan Mann

Also, to our NOC partners NetWitness (especially David Glover), Palo Alto Networks (especially Jason Reverri), Lumen, Gigamon, IronNet, and the entire Black Hat / Informa Tech staff (especially Grifter ‘Neil Wyler’, Bart Stump, Steve Fink, James Pope, Jess Stafford and Steve Oldenbourg).

Read Part 1:

Black Hat USA 2022: Creating Hacker Summer Camp

About Black Hat

For 25 years, Black Hat has provided attendees with the very latest in information security research, development, and trends. These high-profile global events and trainings are driven by the needs of the security community, striving to bring together the best minds in the industry. Black Hat inspires professionals at all career levels, encouraging growth and collaboration among academia, world-class researchers, and leaders in the public and private sectors. Black Hat Briefings and Trainings are held annually in the United States, Europe and USA. More information is available at: blackhat.com. Black Hat is brought to you by Informa Tech.


We’d love to hear what you think. Ask a Question, Comment Below, and Stay Connected with Cisco Secure on social!

Cisco Secure Social Channels

Instagram
Facebook
Twitter
LinkedIn

Cisco Talos — Our not-so-secret threat intel advantage

By Neville Letzerich

Security tools are only as good as the intelligence and expertise that feeds them. We’re very fortunate to have our security technologies powered by Cisco Talos, one of the largest and most trusted threat intelligence groups in the world. Talos is comprised of highly skilled researchers, analysts, and engineers who provide industry-leading visibility, actionable intelligence, and vulnerability research to protect both our customers and the internet at large.

The Talos team serves as a crucial pillar of our innovation — alerting customers and the public to new threats and mitigation tactics, enabling us to quickly incorporate protection into our products, and stepping in to help organizations with incident response, threat hunting, compromise assessments and more. Talos can also be found securing large-scale events such as the Super Bowl, and working with government and law enforcement organizations across the globe to share intelligence.

With Cisco’s vast customer base and broad portfolio — from routers and switches to email and endpoints — Talos has visibility into worldwide telemetry. Once a threat is seen, whether it’s a phishing URL or an IP address hosting malware, detections are created and indicators of compromise are categorized and blocked across our Cisco Secure portfolio.

Talos also leverages its unique insights to help society as a whole better understand and combat the cyberattacks facing us daily. During the war in Ukraine, the group has taken on the additional task of defending over 30 critical infrastructure providers in the country by directly managing and monitoring their endpoint security.

How Talos powers XDR

The reality of security today is that organizations must be constantly ready to detect and contain both known and unknown threats, minimize impact, and keep business going no matter what happens in the cyber realm. In light of hybrid work, evolving network architectures, and increasingly insidious attacks, all organizations must also be prepared to rapidly recover if disaster strikes, and then emerge stronger. We refer to this as security resilience, and Talos plays a critical role in helping our customers achieve it.

For several years, our integrated, cloud-native Cisco SecureX platform has been delivering extended detection and response (XDR) capabilities and more. SecureX allows customers to aggregate, analyze, and act on intelligence from disparate sources for a coordinated response to cyber threats.

Through the SecureX platform, intelligence from Talos is combined with telemetry from our customers’ environments — including many third-party tools — to provide a more complete picture of what’s going on in the network. Additionally, built-in, automated response functionality helps to speed up and streamline mitigation. This way, potential attacks can be identified, prioritized, and remediated before they lead to major impact.

For XDR to be successful, it must not only aggregate data, but also make sense of it. Through combined insights from various resources, SecureX customers obtain the unified visibility and context needed to rapidly prioritize the right threats at the right time. With SecureX, security analysts spend up to 90 percent less time per incident.

Accelerating threat detection and response

One of Australia’s largest universities, Deakin University, needed to improve its outdated security posture and transition from ad hoc processes to a mature program. Its small security team sought an integrated solution to simplify and strengthen threat defense.

With a suite of Cisco security products integrated through SecureX, Deakin University was able to reduce the typical investigation and response time for a major threat down from over a week to just an hour. The university was also able to decrease its response time for malicious emails from an hour to as little as five minutes.

“The most important outcome that we have achieved so far is that security is now a trusted function.”

– Fadi Aljafari, Information Security and Risk Manager, Deakin University

Also in the education space, AzEduNet provides connectivity and online services to 1.5 million students and 150,000 teachers at 4,300 educational institutions in Azerbaijan. “We don’t have enough staff to monitor every entry point into our network and correlate all the information from our security solutions,” says Bahruz Ibrahimov, senior information security engineer at AzEduNet.

The organization therefore implemented Cisco SecureX to accelerate investigations and incident management, maximize operational efficiency with automated workflows, and decrease threat response time. With SecureX, AzEduNet has reduced its security incidents by 80 percent.

“The integration with all our Cisco Secure solutions and with other vendors saves us response and investigation time, as well as saving time for our engineers.”

– Bahruz Ibrahimov, Senior Information Security Engineer, AzEduNet

Boosting cyber resilience with Talos

The sophistication of attackers and sheer number of threats out there today make it extremely challenging for most cybersecurity teams to effectively stay on top of alerts and recognize when something requires their immediate attention. According to a survey by ESG, 81 percent of organizations say their security operations have been affected by the cybersecurity skills shortage.

That’s why Talos employs hundreds of researchers around the globe — and around the clock — to collect and analyze massive amounts of threat data. The group uses the latest in machine learning logic and custom algorithms to distill the data into manageable, actionable intelligence.

“Make no mistake, this is a battle,” said Nick Biasini, head of outreach for Cisco Talos, who oversees a team of global threat hunters. “In order to keep up with the adversaries, you really need a deep technical understanding of how these threats are constructed and how the malware operates to quickly identify how it’s changing and evolving. Offense is easy, defense is hard.”

Maximizing defense against future threats  

Earlier this year, we unveiled our strategic vision for the Cisco Security Cloud to deliver end-to-end security across hybrid, multicloud environments. Talos will continue to play a pivotal role in our technology as we execute on this vision. In addition to driving protection in our products, Talos also offers more customized and hands-on expertise to customers when needed.

Cisco Talos Incident Response provides a full suite of proactive and emergency services to help organizations prepare for, respond to, and recover from a breach — 24 hours a day. Additionally, the recently released Talos Intel on Demand service delivers custom research unique to your organization, as well as direct access to Talos security analysts for increased awareness and confidence.

Enhance your intelligence + security operations

Visit our dedicated Cisco Talos web page to learn more about the group and the resources it offers to help keep global organizations cyber resilient. Then, discover how XDR helps Security Operations Center (SOC) teams hunt for, investigate, and remediate threats.

Watch video: What it means to be a threat hunter


We’d love to hear what you think. Ask a Question, Comment Below, and Stay Connected with Cisco Secure on social!

Cisco Secure Social Channels

Instagram
Facebook
Twitter
LinkedIn

Hackers Target Ukrainian Software Company Using GoMet Backdoor

By Ravie Lakshmanan
A large software development company whose software is used by different state entities in Ukraine was at the receiving end of an "uncommon" piece of malware, new research has found. The malware, first observed on the morning of May 19, 2022, is a custom variant of the open source backdoor known as GoMet and is designed for maintaining persistent access to the network. "This access could be

Pakistani Hackers Targeting Indian Students in Latest Malware Campaign

By Ravie Lakshmanan
The advanced persistent threat (APT) group known as Transparent Tribe has been attributed to a new ongoing phishing campaign targeting students at various educational institutions in India at least since December 2021. "This new campaign also suggests that the APT is actively expanding its network of victims to include civilian users," Cisco Talos said in a report shared with The Hacker News.

Cisco Talos Supports Ukraine Through Empathy

By Mary Kate Schmermund

Cisco Talos has a long-standing relationship with Ukraine, so when Russia invaded the country earlier this year, things hit close to home. Cisco Talos leaders rallied together to provide cybersecurity threat hunting to vital infrastructure, humanitarian support and goods and services to employees and their families in the region.

Ashlee Benge, Amy Henderson and Sammi Seaman spearheaded initiatives to support and sustain Ukrainian employees and threat hunters working around-the-clock to prevent cyberattacks and remember the human element. Even in the midst of crisis, they’ve facilitated open communication, emphasized mental health and cultivated connection.

Cisco Talos’ Relationship With Ukraine

Given Ukraine’s unique position on the front lines of cyberwarfare, Cisco Talos has had a very close partnership with Ukraine. The threat intelligence team has worked with several partners in the country from a cyber threat perspective. That long standing connection is part of why Russia’s invasion of Ukraine has been felt so deeply. “Some Ukrainian team members evacuated before the invasion, others did not,” said Amy Henderson, head of strategic planning & communications. “Our teams of threat hunters have been around-the-clock hunting in the data since the invasion. They’re stopping attacks from happening.”

Cisco Talos set up Cisco Secure Endpoint on about thirty partners’ organizations and extended the offering to critical infrastructure organizations in Ukraine such as hospitals, directly monitoring Cisco Secure Endpoint, “because their people are busy doing other things right now. They can’t sit at a screen,” Henderson said.

Leading With Empathy and Open Communication

Lead of Strategic Business Intelligence Ashlee Benge directs the Ukraine Threat Hunting Task Unit which requires empathy, compassion and an awareness of the needs of forty-five threat hunters. Veteran threat hunters with decades of experience have volunteered to contribute to the team while other members of Cisco Talos have also volunteered their skill sets to the work. Benge values the distinct contributions of her team members and describes them as, “quite brilliant and very good at their jobs. Talos does a really good job of hiring good people, and so the worst thing that I could do is get in their way.” Getting in their way looks different for different team members which is why Benge has established trainings and consistent ways to evaluate that the needs of her team are being met.

The nature of such a demanding, on-going situation coupled with the team’s dedication can lead employees to work themselves into the ground. To combat this, leaders maintain weekly check-ins that include asking employees how they’re taking care of themselves and checking for signs of burnout. “When you have rest you’re at peak performance and can problem solve. But when you start burning out and get to be irritable and snappy, you’re not able to problem solve. Just step back. You’ll be in a much better head space,” Henderson advises.

Stepping back has meant rotating projects to level out activity levels and urgency. Leaders have also stepped in to ensure employees take time off and that when they’re away, they’re fully away. “When you’re in such a high intensity environment it takes two to three days just to come off of that. If you’re only taking a day here or day there, you’re not even scratching the surface of coming down. So I’ll suggest maybe you need to take a week and completely recharge,” Henderson says.

Supporting The Human Element

Team Lead of Employee Experience Sammi Seaman was heartened by Cisco’s support of Ukrainian employees including helping employees and their families out of cities and into new housing. The humanitarian focus led Seaman to ask “How else can we help? Our colleagues have had to leave their homes and they’re still trying to do work. How do I get them necessities like medicine and shampoo?”

Seaman’s empathy and collaboration within her team and with Cisco Talos leadership led to determining the highest needs including more stable internet and navigating the transport of goods directly to employees and their families through freight mail. Seaman worked with her team to ensure necessary items like medical kits could get directly to people who needed them as quickly as possible. There are also pages available coordinating housing, transportation and other forms of support.

“It’s been interesting to think about people needing medicine for various reasons and that I’m also buying Legos and castles so that the children who have been displaced have toys and things that bring them joy and allow them to be kids in this situation,” Seaman said.

As Seaman prepared more boxes to ship, an employee shared a photograph of his daughter with some of the things Seaman had sent. “I just started crying. It was such a relief.” A relief she wanted to share, leaving the boxes for a moment to connect with other team members around the positive impact of their hard work.

“Despite all of these things that are happening around us that are horrific and awful and things that shouldn’t be happening, there are still things that we can celebrate. We’re still humans who have feelings, relationships, milestones and holidays.” – Sammi Seaman

Remembering children also became important during spring holidays. Through asking employees if they celebrated Easter and if they’d like Easter baskets, she learned that many employees celebrated traditional Orthodox Ukrainian Easter and would appreciate the baskets.

Seaman’s colleague researched what people in Ukraine typically put in their Easter baskets and together they made the baskets, boxed them up and shipped them. “The baskets weren’t a necessity but were nice to remind people that despite all of these things that are happening around us that are horrific and awful and things that shouldn’t be happening, there are still things that we can celebrate. We’re still humans who have feelings, relationships, milestones and holidays.”

Mental Health and Self-Care Matter

Outside of work, Benge competes as an Olympic weightlifter. After months of training, her first national level meet was scheduled to happen early into the war in Ukraine. She considered withdrawing given the 24/7 nature of Cisco Talos’ response. However, “only because of the support of those around me,” Benge decided to compete—while working from her phone in the warm up room between lifts. The physical movement allows Benge to manage her mental health and stress while modeling self-care for the team: “If I can’t be my own best self, then the people around me can hardly be expected to do the same.”

Self-care and mental health are so important to the team that Henderson and Benge recently joined their colleagues, Matt Olney, the director of threat intelligence and interdiction, and Strategic Communications Leader Mitch Neff on a Cisco Secure podcast about mental health. The conversation illuminated the importance of reaching out for help, utilizing support systems such as those provided by Cisco and talking to someone including a therapist.

“Using those types of resources is a valuable thing, particularly when managing very high levels of stress and anxiety that come with cybersecurity. No matter what kind of support it is that we need, it’s important to take that time and recognize that it’s valuable to invest in your own mental health,” Benge stated.

Seaman shared that because it can be hard to ask for help or delegate, when she does, she gives herself a pat on the back. She advises that especially in crisis situations it’s important to remember that while things need to get done, it’s not entirely on you to get those things done. “The leadership at Cisco Talos has really emphasized that you’re not alone. The employee assistance program has been a great resource and I’ve got a therapist that I talk to about these things and make sure that I’m taking care of myself so that I can continue to take care of others.”

The team’s bond and purpose run deep. We care deeply about everyone that we work with. It’s okay to not be on at all times. It’s okay to feel sad and it’s okay to feel anxious. One of the things that I’ve loved about working with Cisco Talos, especially during these more difficult things, is that everybody’s got your back and they make it a safe space to share those feelings. I truly feel like the people I work with are like my family. We’re curated an environment where we can all talk about what we’re going through.”

Join Us

To learn more about Cisco Talos, Cisco Secure and Duo Security and how you can apply your empathy, skills and passion to make a difference in cybersecurity, check out open roles.


We’d love to hear what you think. Ask a Question, Comment Below, and Stay Connected with Cisco Secure on social!

Cisco Secure Social Channels

Instagram
Facebook
Twitter
LinkedIn

Black Hat Asia 2022 Continued: Cisco Secure Integrations

By Jessica Bair

In part one of our Black Hat Asia 2022 NOC blog, we discussed building the network with Meraki: 

  • From attendee to press to volunteer – coming back to Black Hat as NOC volunteer by Humphrey Cheung 
  • Meraki MR, MS, MX and Systems Manager by Paul Fidler 
  • Meraki Scanning API Receiver by Christian Clasen 

In this part two, we will discuss:  

  • SecureX: Bringing Threat Intelligence Together by Ian Redden 
  • Device type spoofing event by Jonny Noble 
  • Self Service with SecureX Orchestration and Slack by Matt Vander Horst 
  • Using SecureX sign-on to streamline access to the Cisco Stack at Black Hat by Adi Sankar 
  • Future Threat Vectors to Consider – Cloud App Discovery by Alejo Calaoagan 
  • Malware Threat Intelligence made easy and available, with Cisco Secure Malware Analytics and SecureX by Ben Greenbaum 

SecureX: Bringing Threat Intelligence Together by Ian Redden 

In addition to the Meraki networking gear, Cisco Secure also shipped two Umbrella DNS virtual appliances to Black Hat Asia, for internal network visibility with redundancy, in addition to providing: 

Cisco Secure Threat Intelligence (correlated through SecureX)

Donated Partner Threat Intelligence (correlated through SecureX)

Open-Source Threat Intelligence (correlated through SecureX)

Continued Integrations from past Black Hat events

  • NetWitness PCAP file carving and submission to Cisco Secure Malware Analytics (formerly Threat Grid) for analysis

New Integrations Created at Black Hat Asia 2022

  • SecureX threat response and NetWitness SIEM: Sightings in investigations
  • SecureX orchestration workflows for Slack that enabled:
    • Administrators to block a device by MAC address for violating the conference Code of Conduct
    • NOC members to query Meraki for information about network devices and their clients
    • NOC members to update the VLAN on a Meraki switchport
    • NOC members to query Palo Alto Panorama for client information
    • Notification if an AP went down
  • NetWitness SIEM integration with Meraki syslogs
  • Palo Alto Panorama integration with Meraki syslogs
  • Palo Alto Cortex XSOAR integration with Meraki and Umbrella

Device type spoofing event by Jonny Noble

Overview

During the conference, a NOC Partner informed us that they received an alert from May 10 concerning an endpoint client that accessed two domains that they saw as malicious:

  • legendarytable[.]com
  • drakefollow[.]com

Client details from Partner:

  • Private IP: 10.XXX.XXX.XXX
  • Client name: LAPTOP-8MLGDXXXX
  • MAC: f4:XX:XX:XX:XX:XX
  • User agent for detected incidents: Mozilla/5.0 (iPhone; CPU iPhone OS 11_1_2 like Mac OS X) AppleWebKit/602.2.8 (KHTML, like Gecko) Version/11.0 Mobile/14B55c Safari/602.1

Based on the user agent, the partner derived that the device type was an Apple iPhone.

SecureX analysis

  • legendarytable[.]com à Judgement of Suspicious by alphaMountain.ai
  • drakefollow[.]com à Judgement of Malicious by alphaMountain.ai

Umbrella Investigate analysis

Umbrella Investigate positions both domains as low risk, both registered recently in Poland, and both hosted on the same IP:

Despite the low-risk score, the nameservers have high counts of malicious associated domains:

Targeting users in ASA, UK, and Nigeria:

Meraki analysis

Based on the time of the incident, we can trace the device’s location (based on its IP address). This is thanks to the effort we invested in mapping out the exact location of all Meraki APs, which we deployed across the convention center with an overlay of the event map covering the area of the event:

  • Access Point: APXX
  • Room: Orchid Ballroom XXX
  • Training course at time in location: “Web Hacking Black Belt Edition”

Further analysis and conclusions

The device name (LAPTOP-8MLGXXXXXX) and MAC address seen (f4:XX:XX:XX:XX:XX) both matched across the partner and Meraki, so there was no question that we were analyzing the same device.

Based on the useragent captured by the partner, the device type was an Apple iPhone. However, Meraki was reporting the Device and its OS as “Intel, Android”

A quick look up for the MAC address confirmed that the OUI (organizationally unique identifier) for f42679 was Intel Malaysia, making it unlikely that this was an Apple iPhone.

The description for the training “Web Hacking Black Belt Edition” can be seen here:

https://www.blackhat.com/asia-22/training/schedule/#web-hacking-black-belt-edition–day-25388

It is highly likely that the training content included the use of tools and techniques for spoofing the visibility of useragent or device type.

There is also a high probability that the two domains observed were used as part of the training activity, rather than this being part of a live attack.

It is clear that integrating the various Cisco technologies (Meraki wireless infrastructure, SecureX, Umbrella, Investigate) used in the investigation of this incident, together with the close partnership and collaboration of our NOC partners, positioned us where we needed to be and provided us with the tools we needed to swiftly collect the data, join the dots, make conclusions, and successfully bring the incident to closure.

Self Service with SecureX Orchestration and Slack by Matt Vander Horst

Overview

Since Meraki was a new platform for much of the NOC’s staff, we wanted to make information easier to gather and enable a certain amount of self-service. Since the Black Hat NOC uses Slack for messaging, we decided to create a Slack bot that NOC staff could use to interact with the Meraki infrastructure as well as Palo Alto Panorama using the SecureX Orchestration remote appliance. When users communicate with the bot, webhooks are sent to Cisco SecureX Orchestration to do the work on the back end and send the results back to the user.

Design

Here’s how this integration works:

  1. When a Slack user triggers a ‘/’ “slash command” or other type of interaction, a webhook is sent to SecureX Orchestration. Webhooks trigger orchestration workflows which can do any number of things. In this case, we have two different workflows: one to handle slash commands and another for interactive elements such as forms (more on the workflows later).
  2. Once the workflow is triggered, it makes the necessary API calls to Meraki or Palo Alto Panorama depending on the command issued.
  3. After the workflow is finished, the results are passed back to Slack using either an API request (for slash commands) or webhook (for interactive elements).
  4. The user is presented with the results of their inquiry or the action they requested.

Workflow #1: Handle Slash Commands

Slash commands are a special type of message built into Slack that allow users to interact with a bot. When a Slack user executes a slash command, the command and its arguments are sent to SecureX Orchestration where a workflow handles the command. The table below shows a summary of the slash commands our bot supported for Black Hat Asia 2022:

Here’s a sample of a portion of the SecureX Orchestration workflow that powers the above commands:

And here’s a sample of firewall logs as returned from the “/pan_traffic_history” command:

Workflow #2: Handle Interactivity

A more advanced form of user interaction comes in the form of Slack blocks. Instead of including a command’s arguments in the command itself, you can execute the command and Slack will present you with a form to complete, like this one for the “/update_vlan” command:

These forms are much more user friendly and allow information to be pre-populated for the user. In the example above, the user can simply select the switch to configure from a drop-down list instead of having to enter its name or serial number. When the user submits one of these forms, a webhook is sent to SecureX Orchestration to execute a workflow. The workflow takes the requested action and sends back a confirmation to the user:

Conclusion

While these two workflows only scratched the surface of what can be done with SecureX Orchestration webhooks and Slack, we now have a foundation that can be easily expanded upon going forward. We can add additional commands, new forms of interactivity, and continue to enable NOC staff to get the information they need and take necessary action. The goal of orchestration is to make life simpler, whether it is by automating our interactions with technology or making those interactions easier for the user. 

Future Threat Vectors to Consider – Cloud App Discovery by Alejo Calaoagan

Since 2017 (starting in Black Hat USA – Las Vegas), Cisco Umbrella has provided DNS security to the Black Hat attendee network, added layers of traffic visibility previously not seen. Our efforts have largely been successful, identifying thousands of threats over the years and mitigating them via Umbrella’s blocking capabilities when necessary. This was taken a step further at Black Hat London 2021, where we introduced our Virtual Appliances to provide source IP attribution to the devices making requests.

 

 

Here at Black Hat Asia 2022, we’ve been noodling on additional ways to provide advanced protection for future shows, and it starts with Umbrella’s Cloud Application Discovery’s feature, which identified 2,286 unique applications accessed by users on the attendee network across the four-day conference.  Looking at a snapshot from a single day of the show, Umbrella captured 572,282 DNS requests from all cloud apps, with over 42,000 posing either high or very high risk.

Digging deeper into the data, we see not only the types of apps being accessed…

…but also see the apps themselves…

…and we can flag apps that look suspicious.

We also include risk downs breaks by category…

…and drill downs on each.

While this data alone won’t provide enough information to take action, including this data in analysis, something we have been doing, may provide a window into new threat vectors that may have previously gone unseen. For example, if we identify a compromised device infected with malware or a device attempting to access things on the network that are restricted, we can dig deeper into the types of cloud apps those devices are using and correlate that data with suspicious request activity, potential uncovering tools we should be blocking in the future.

I can’t say for certain how much this extra data set will help us uncover new threats, but, with Black Hat USA just around the corner, we’ll find out soon.

Using SecureX sign-on to streamline access to the Cisco Stack at Black Hat by Adi Sankar

From five years ago to now, Cisco has tremendously expanded our presence at Black Hat to include a multitude of products. Of course, sign-on was simple when it was just one product (Secure Malware Analytics) and one user to log in. When it came time to add a new technology to the stack it was added separately as a standalone product with its own method of logging in. As the number of products increased, so did the number of Cisco staff at the conference to support these products. This means sharing usernames and passwords became tedious and not to mention insecure, especially with 15 Cisco staff, plus partners, accessing the platforms.

The Cisco Secure stack at Black Hat includes SecureX, Umbrella, Malware Analytics, Secure Endpoint (iOS clarity), and Meraki. All of these technologies support using SAML SSO natively with SecureX sign-on. This means that each of our Cisco staff members can have an individual SecureX sign-on account to log into the various consoles. This results in better role-based access control, better audit logging and an overall better login experience. With SecureX sign-on we can log into all the products only having to type a password one time and approve one Cisco DUO Multi-Factor Authentication (MFA) push.

How does this magic work behind the scenes? It’s actually rather simple to configure SSO for each of the Cisco technologies, since they all support SecureX sign-on natively. First and foremost, you must set up a new SecureX org by creating a SecureX sign-on account, creating a new organization and integrating at least one Cisco technology. In this case I created a new SecureX organization for Black Hat and added the Secure Endpoint module, Umbrella Module, Meraki Systems Manager module and the Secure Malware Analytics module. Then from Administration à Users in SecureX, I sent an invite to the Cisco staffers that would be attending the conference, which contained a link to create their account and join the Blackhat SecureX organization. Next let’s take a look at the individual product configurations.

Meraki:

In the Meraki organization settings enable SecureX sign-on. Then under Organization à Administrators add a new user and specify SecureX sign-on as the authentication method. Meraki even lets you limit users to particular networks and set permission levels for those networks. Accepting the email invitation is easy since the user should already be logged into their SecureX sign-on account. Now, logging into Meraki only requires an email address and no password or additional DUO push.

Umbrella:

Under Admin à Authentication configure SecureX sign-on which requires a test login to ensure you can still login before using SSO for authentication to Umbrella. There is no need to configure MFA in Umbrella since SecureX sign-on comes with built in DUO MFA. Existing users and any new users added in Umbrella under Admin à Accounts will now be using SecureX sign-on to login to Umbrella. Logging into Umbrella is now a seamless launch from the SecureX dashboard or from the SecureX ribbon in any of the other consoles.

Secure Malware Analytics:

A Secure Malware Analytics organization admin can create new users in their Threat Grid tenant. This username is unique to Malware Analytics, but it can be connected to a SecureX sign-on account to take advantage of the seamless login flow. From the email invitation the user will create a password for their Malware Analytics user and accept the EULA. Then in the top right under My Malware Analytics Account, the user has an option to connect their SecureX sign-on account which is a one click process if already signed in with SecureX sign-on. Now when a user navigates to Malware Analytics login page, simply clicking “Login with SecureX Sign-On” will grant them access to the console.

 

Secure Endpoint:

The Secure Endpoint deployment at Blackhat is limited to IOS clarity through Meraki Systems Manager for the conference IOS devices. Most of the asset information we need about the iPhones/iPads is brought in through the SecureX Device Insights inventory. However, for initial configuration and to view device trajectory it is required to log into Secure Endpoint. A new Secure Endpoint account can be created under Accounts à Users and an invite is sent to corresponding email address. Accepting the invite is a smooth process since the user is already signed in with SecureX sign-on. Privileges for the user in the Endpoint console can be granted from within the user account.

Conclusion:

To sum it all up, SecureX sign-on is the standard for the Cisco stack moving forward. With a new SecureX organization instantiated using SecureX sign-on any new users to the Cisco stack at Black Hat will be using SecureX sign-on. SecureX sign-on has helped our user management be much more secure as we have expanded our presence at Black Hat. SecureX sign-on provides a unified login mechanism for all the products and modernized our login experience at the conference.

Malware Threat Intelligence made easy and available, with Cisco Secure Malware Analytics and SecureX by Ben Greenbaum

I’d gotten used to people’s reactions upon seeing SecureX in use for the first time. A few times at Black Hat, a small audience gathered just to watch us effortlessly correlate data from multiple threat intelligence repositories and several security sensor networks in just a few clicks in a single interface for rapid sequencing of events and an intuitive understanding of security events, situations, causes, and consequences. You’ve already read about a few of these instances above. Here is just one example of SecureX automatically putting together a chronological history of observed network events detected by products from two vendors (Cisco Umbrella and NetWitness) . The participation of NetWitness in this and all of our other investigations was made possible by our open architecture, available APIs and API specifications, and the creation of the NetWitness module described above.

In addition to the traffic and online activities of hundreds of user devices on the network, we were responsible for monitoring a handful of Black Hat-owned devices as well. Secure X Device Insights made it easy to access information about these assets, either en masse or as required during an ongoing investigation. iOS Clarity for Secure Endpoint and Meraki System Manager both contributed to this useful tool which adds business intelligence and asset context to SecureX’s native event and threat intelligence, for more complete and more actionable security intelligence overall.

SecureX is made possible by dozens of integrations, each bringing their own unique information and capabilities. This time though, for me, the star of the SecureX show was our malware analysis engine, Cisco Secure Malware Analytics (CSMA). Shortly before Black Hat Asia, the CSMA team released a new version of their SecureX module. SecureX can now query CSMA’s database of malware behavior and activity, including all relevant indicators and observables, as an automated part of the regular process of any investigation performed in SecureX Threat Response.

This capability is most useful in two scenarios:

1: determining if suspicious domains, IPs and files reported by any other technology had been observed in the analysis of any of the millions of publicly submitted file samples, or our own.
2: rapidly gathering additional context about files submitted to the analysis engine by the integrated products in the Black Hat NOC.

The first was a significant time saver in several investigations. In the example below, we received an alert about connections to a suspicious domain. In that scenario, our first course of action is to investigate the domain and any other observables reported with it (typically the internal and public IPs included in the alert). Due to the new CSMA module, we immediately discovered that the domain had a history of being contacted by a variety of malware samples, from multiple families, and that information, corroborated by automatically gathered reputation information from multiple sources about each of those files, gave us an immediate next direction to investigate as we hunted for evidence of those files being present in network traffic or of any traffic to other C&C resources known to be used by those families. From the first alert to having a robust, data-driven set of related signals to look for, took only minutes, including from SecureX partner Recorded Future, who donated a full threat intelligence license for the Black Hat NOC.

The other scenario, investigating files submitted for analysis, came up less frequently but when it did, the CSMA/SecureX integration was equally impressive. We could rapidly, nearly immediately, look for evidence of any of our analyzed samples in the environment across all other deployed SecureX-compatible technologies. That evidence was no longer limited to searching for the hash itself, but included any of the network resources or dropped payloads associated with the sample as well, easily identifying local targets who had not perhaps seen the exact variant submitted, but who had nonetheless been in contact with that sample’s Command and Control infrastructure or other related artifacts.

And of course, thanks to the presence of the ribbon in the CSMA UI, we could be even more efficient and do this with multiple samples at once.

SecureX greatly increased the efficiency of our small volunteer team, and certainly made it possible for us to investigate more alerts and events, and hunt for more threats, all more thoroughly, than we would have been able to without it. SecureX truly took this team to the next level, by augmenting and operationalizing the tools and the staff that we had at our disposal.

We look forward to seeing you at Black Hat USA in Las Vegas, 6-11 August 2022!

Acknowledgements: Special thanks to the Cisco Meraki and Cisco Secure Black Hat NOC team: Aditya Sankar, Aldous Yeung, Alejo Calaoagan, Ben Greenbaum, Christian Clasen, Felix H Y Lam, George Dorsey, Humphrey Cheung, Ian Redden, Jeffrey Chua, Jeffry Handal, Jonny Noble, Matt Vander Horst, Paul Fidler and Steven Fan.

Also, to our NOC partners NetWitness (especially David Glover), Palo Alto Networks (especially James Holland), Gigamon, IronNet (especially Bill Swearington), and the entire Black Hat / Informa Tech staff (especially Grifter ‘Neil Wyler’, Bart Stump, James Pope, Steve Fink and Steve Oldenbourg).

About Black Hat

For more than 20 years, Black Hat has provided attendees with the very latest in information security research, development, and trends. These high-profile global events and trainings are driven by the needs of the security community, striving to bring together the best minds in the industry. Black Hat inspires professionals at all career levels, encouraging growth and collaboration among academia, world-class researchers, and leaders in the public and private sectors. Black Hat Briefings and Trainings are held annually in the United States, Europe and Asia. More information is available at: blackhat.com. Black Hat is brought to you by Informa Tech.

Black Hat Asia 2022: Building the Network

By Jessica Bair

In part one of this issue of our Black Hat Asia NOC blog, you will find: 

  • From attendee to press to volunteer – coming back to Black Hat as NOC volunteer by Humphrey Cheung 
  • Meraki MR, MS, MX and Systems Manager by Paul Fidler 
  • Meraki Scanning API Receiver by Christian Clasen 

Cisco Meraki was asked by Black Hat Events to be the Official Wired and Wireless Network Equipment, for Black Hat Asia 2022, in Singapore, 10-13 May 2022; in addition to providing the Mobile Device Management (since Black Hat USA 2021), Malware Analysis (since Black Hat USA 2016), & DNS (since Black Hat USA 2017) for the Network Operations Center. We were proud to collaborate with NOC partners Gigamon, IronNet, MyRepublic, NetWitness and Palo Alto Networks. 

To accomplish this undertaking in a few weeks’ time, after the conference had a green light with the new COVID protocols, Cisco Meraki and Cisco Secure leadership gave their full support to send the necessary hardware, software licenses and staff to Singapore. Thirteen Cisco engineers deployed to the Marina Bay Sands Convention Center, from Singapore, Australia, United States and United Kingdom; with two additional remote Cisco engineers from the United States.

From attendee to press to volunteer – coming back to Black Hat as NOC volunteer by Humphrey Cheung

Loops in the networking world are usually considered a bad thing. Spanning tree loops and routing loops happen in an instant and can ruin your whole day, but over the 2nd week in May, I made a different kind of loop. Twenty years ago, I first attended the Black Hat and Defcon conventions – yay Caesars Palace and Alexis Park – a wide-eyed tech newbie who barely knew what WEP hacking, Driftnet image stealing and session hijacking meant. The community was amazing and the friendships and knowledge I gained, springboarded my IT career.

In 2005, I was lucky enough to become a Senior Editor at Tom’s Hardware Guide and attended Black Hat as accredited press from 2005 to 2008. From writing about the latest hardware zero-days to learning how to steal cookies from the master himself, Robert Graham, I can say, without any doubt, Black Hat and Defcon were my favorite events of the year.

Since 2016, I have been a Technical Solutions Architect at Cisco Meraki and have worked on insanely large Meraki installations – some with twenty thousand branches and more than a hundred thousand access points, so setting up the Black Hat network should be a piece of cake right? Heck no, this is unlike any network you’ve experienced!

As an attendee and press, I took the Black Hat network for granted. To take a phrase that we often hear about Cisco Meraki equipment, “it just works”. Back then, while I did see access points and switches around the show, I never really dived into how everything was set up.

A serious challenge was to secure the needed hardware and ship it in time for the conference, given the global supply chain issues. Special recognition to Jeffry Handal for locating the hardware and obtaining the approvals to donate to Black Hat Events. For Black Hat Asia, Cisco Meraki shipped:

Let’s start with availability. iPads and iPhones are scanning QR codes to register attendees. Badge printers need access to the registration system. Training rooms all have their separate wireless networks – after all, Black Hat attendees get a baptism by fire on network defense and attack. To top it all off, hundreds of attendees gulped down terabytes of data through the main conference wireless network.

All this connectivity was provided by Cisco Meraki access points, switches, security appliances, along with integrations into SecureX, Umbrella and other products. We fielded a literal army of engineers to stand up the network in less than two days… just in time for the training sessions on May 10  to 13th and throughout the Black Hat Briefings and Business Hall on May 12 and 13.

Let’s talk security and visibility. For a few days, the Black Hat network is probably one of the most hostile in the world. Attendees learn new exploits, download new tools and are encouraged to test them out. Being able to drill down on attendee connection details and traffic was instrumental on ensuring attendees didn’t get too crazy.

On the wireless front, we made extensive use of our Radio Profiles to reduce interference by tuning power and channel settings. We enabled band steering to get more clients on the 5GHz bands versus 2.4GHz and watched the Location Heatmap like a hawk looking for hotspots and dead areas. Handling the barrage of wireless change requests – enable or disabling this SSID, moving VLANs (Virtual Local Area Networks), enabling tunneling or NAT mode, – was a snap with the Meraki Dashboard.

Shutting Down a Network Scanner

While the Cisco Meraki Dashboard is extremely powerful, we happily supported exporting of logs and integration in major event collectors, such as the NetWitness SIEM and even the Palo Alto firewall. On Thursday morning, the NOC team found a potentially malicious Macbook Pro performing vulnerability scans against the Black Hat management network. It is a balance, as we must allow trainings and demos connect to malicious websites, download malware and execute. However, there is a Code of Conduct to which all attendees are expected to follow and is posted at Registration with a QR code.

The Cisco Meraki network was exporting syslog and other information to the Palo Alto firewall, and after correlating the data between the Palo Alto Dashboard and Cisco Meraki client details page, we tracked down the laptop to the Business Hall.

We briefed the NOC management, who confirmed the scanning was violation of the Code of Conduct, and the device was blocked in the Meraki Dashboard, with the instruction to come to the NOC.

The device name and location made it very easy to determine to whom it belonged in the conference attendees.

A delegation from the NOC went to the Business Hall, politely waited for the demo to finish at the booth and had a thoughtful conversation with the person about scanning the network. 😊

Coming back to Black Hat as a NOC volunteer was an amazing experience.  While it made for long days with little sleep, I really can’t think of a better way to give back to the conference that helped jumpstart my professional career.

Meraki MR, MS, MX and Systems Manager by Paul Fidler

With the invitation extended to Cisco Meraki to provide network access, both from a wired and wireless perspective, there was an opportunity to show the value of the Meraki platform integration capabilities of Access Points (AP), switches, security appliances and mobile device management.

The first amongst this was the use of the Meraki API. We were able to import the list of MAC addresses of the Meraki MRs, to ensure that the APs were named appropriately and tagged, using a single source of truth document shared with the NOC management and partners, with the ability to update en masse at any time.

Floor Plan and Location Heatmap

On the first day of NOC setup, the Cisco team walked around the venue to discuss AP placements with the staff of the Marina Bay Sands. Whilst we had a simple Powerpoint showing approximate AP placements for the conference, it was noted that the venue team had an incredibly detailed floor plan of the venue. This was acquired in PDF and uploaded into the Meraki Dashboard; and with a little fine tuning, aligned perfectly with the Google Map.

Meraki APs were then placed physically in the venue meeting and training rooms, and very roughly on the floor plan. One of the team members then used a printout of the floor plan to mark accurately the placement of the APs. Having the APs named, as mentioned above, made this an easy task (walking around the venue notwithstanding!). This enabled accurate heatmap capability.

The Location Heatmap was a new capability for Black Hat NOC, and the client data visualized in NOC continued to be of great interest to the Black Hat management team, such as which training, briefing and sponsor booths drew the most interest.

SSID Availability

The ability to use SSID Availability was incredibly useful. It allowed ALL of the access points to be placed within a single Meraki Network. Not only that, because of the training events happening during the week, as well as TWO dedicated SSIDs for the Registration and lead tracking iOS devices (more of which later), one for initial provisioning (which was later turned off), and one for certificated based authentication, for a very secure connection.

Network Visibility

We were able to monitor the number of connected clients, network usage, the persons passing by the network and location analytics, throughout the conference days. We provided visibility access to the Black Hat NOC management and the technology partners (along with full API access), so they could integrate with the network platform.

Alerts

Meraki alerts are exactly that: the ability to be alerted to something that happens in the Dashboard. Default behavior is to be emailed when something happens. Obviously, emails got lost in the noise, so a web hook was created in SecureX orchestration to be able to consume Meraki alerts and send it to Slack (the messaging platform within the Black Hat NOC), using the native template in the Meraki Dashboard. The first alert to be created was to be alerted if an AP went down. We were to be alerted after five minutes of an AP going down, which is the smallest amount of time available before being alerted.

The bot was ready; however, the APs stayed up the entire time! 

Meraki Systems Manager

Applying the lessons learned at Black Hat Europe 2021, for the initial configuration of the conference iOS devices, we set up the Registration iPads and lead retrieval iPhones with Umbrella, Secure Endpoint and WiFi config. Devices were, as in London, initially configured using Apple Configurator, to both supervise and enroll the devices into a new Meraki Systems Manager instance in the Dashboard.

However, Black Hat Asia 2022 offered us a unique opportunity to show off some of the more integrated functionality.

System Apps were hidden and various restrictions (disallow joining of unknown networks, disallow tethering to computers, etc.) were applied, as well as a standard WPA2 SSID for the devices that the device vendor had set up (we gave them the name of the SSID and Password).

We also stood up a new SSID and turned-on Sentry, which allows you to provision managed devices with, not only the SSID information, but also a dynamically generated certificate. The certificate authority and radius server needed to do this 802.1x is included in the Meraki Dashboard automatically! When the device attempts to authenticate to the network, if it doesn’t have the certificate, it doesn’t get access. This SSID, using SSID availability, was only available to the access points in the Registration area.

Using the Sentry allowed us to easily identify devices in the client list.

One of the alerts generated with SysLog by Meraki, and then viewable and correlated in the NetWitness SIEM, was a ‘De Auth’ event that came from an access point. Whilst we had the IP address of the device, making it easy to find, because the event was a de auth, meaning 802.1x, it narrowed down the devices to JUST the iPads and iPhones used for registration (as all other access points were using WPA2). This was further enhanced by seeing the certificate name used in the de-auth:

Along with the certificate name was the name of the AP: R**

Device Location

One of the inherent problems with iOS device location is when devices are used indoors, as GPS signals just aren’t strong enough to penetrate modern buildings. However, because the accurate location of the Meraki access points was placed on the floor plan in the Dashboard, and because the Meraki Systems Manager iOS devices were in the same Dashboard organization as the access points, we got to see a much more accurate map of devices compared to Black Hat Europe 2021 in London.

When the conference Registration closed on the last day and the Business Hall Sponsors all returned their iPhones, we were able to remotely wipe all of the devices, removing all attendee data, prior to returning to the device contractor.

Meraki Scanning API Receiver by Christian Clasen

Leveraging the ubiquity of both WiFi and Bluetooth radios in mobile devices and laptops, Cisco Meraki’s wireless access points can detect and provide location analytics to report on user foot traffic behavior. This can be useful in retail scenarios where customers desire location and movement data to better understand the trends of engagement in their physical stores.

Meraki can aggregate real-time data of detected WiFi and Bluetooth devices and triangulate their location rather precisely when the floorplan and AP placement has been diligently designed and documented. At the Black Hat Asia conference, we made sure to properly map the AP locations carefully to ensure the highest accuracy possible.

This scanning data is available for clients whether they are associated with the access points or not. At the conference, we were able to get very detailed heatmaps and time-lapse animations representing the movement of attendees throughout the day. This data is valuable to conference organizers in determining the popularity of certain talks, and the attendance at things like keynote presentations and foot traffic at booths.

This was great for monitoring during the event, but the Dashboard would only provide 24-hours of scanning data, limiting what we could do when it came to long-term data analysis. Fortunately for us, Meraki offers an API service we can use to capture this treasure trove offline for further analysis. We only needed to build a receiver for it.

The Receiver Stack

The Scanning API requires that the customer stand up infrastructure to store the data, and then register with the Meraki cloud using a verification code and secret. It is composed of two endpoints:

  1. Validator

Returns the validator string in the response body

[GET] https://yourserver/

This endpoint is called by Meraki to validate the receiving server. It expects to receive a string that matches the validator defined in the Meraki Dashboard for the respective network.

  1. Receiver

Accepts an observation payload from the Meraki cloud

[POST] https://yourserver/

This endpoint is responsible for receiving the observation data provided by Meraki. The URL path should match that of the [GET] request, used for validation.

The response body will consist of an array of JSON objects containing the observations at an aggregate per network level. The JSON will be determined based on WiFi or BLE device observations as indicated in the type parameter.

What we needed was a simple technology stack that would contain (at minimum) a publicly accessible web server capable of TLS. In the end, the simplest implementation was a web server written using Python Flask, in a Docker container, deployed in AWS, connected through ngrok.

In fewer than 50 lines of Python, we could accept the inbound connection from Meraki and reply with the chosen verification code. We would then listen for the incoming POST data and dump it into a local data store for future analysis. Since this was to be a temporary solution (the duration of the four-day conference), the thought of registering a public domain and configuring TLS certificates wasn’t particularly appealing. An excellent solution for these types of API integrations is ngrok (https://ngrok.com/). And a handy Python wrapper was available for simple integration into the script (https://pyngrok.readthedocs.io/en/latest/index.html).

We wanted to easily re-use this stack next time around, so it only made sense to containerize it in Docker. This way, the whole thing could be stood up at the next conference, with one simple command. The image we ended up with would mount a local volume, so that the ingested data would remain persistent across container restarts.

Ngrok allowed us to create a secure tunnel from the container that could be connected in the cloud to a publicly resolvable domain with a trusted TLS certificate generated for us. Adding that URL to the Meraki Dashboard is all we needed to do start ingesting the massive treasure trove of location data from the Aps – nearly 1GB of JSON over 24 hours.

This “quick and dirty” solution illustrated the importance of interoperability and openness in the technology space when enabling security operations to gather and analyze the data they require to monitor and secure events like Black Hat, and their enterprise networks as well. It served us well during the conference and will certainly be used again going forward.

Check out part two of the blog, Black Hat Asia 2022 Continued: Cisco Secure Integrations, where we will discuss integrating NOC operations and making your Cisco Secure deployment more effective:

  • SecureX: Bringing Threat Intelligence Together by Ian Redden
  • Device type spoofing event by Jonny Noble
  • Self Service with SecureX Orchestration and Slack by Matt Vander Horst
  • Using SecureX sign-on to streamline access to the Cisco Stack at Black Hat by Adi Sankar
  • Future Threat Vectors to Consider – Cloud App Discovery by Alejo Calaoagan
  • Malware Threat Intelligence made easy and available, with Cisco Secure Malware Analytics and SecureX by Ben Greenbaum

Acknowledgements: Special thanks to the Cisco Meraki and Cisco Secure Black Hat NOC team: Aditya Sankar, Aldous Yeung, Alejo Calaoagan, Ben Greenbaum, Christian Clasen, Felix H Y Lam, George Dorsey, Humphrey Cheung, Ian Redden, Jeffrey Chua, Jeffry Handal, Jonny Noble, Matt Vander Horst, Paul Fidler and Steven Fan.

Also, to our NOC partners NetWitness (especially David Glover), Palo Alto Networks (especially James Holland), Gigamon, IronNet (especially Bill Swearington), and the entire Black Hat / Informa Tech staff (especially Grifter ‘Neil Wyler’, Bart Stump, James Pope, Steve Fink and Steve Oldenbourg).

About Black Hat

For more than 20 years, Black Hat has provided attendees with the very latest in information security research, development, and trends. These high-profile global events and trainings are driven by the needs of the security community, striving to bring together the best minds in the industry. Black Hat inspires professionals at all career levels, encouraging growth and collaboration among academia, world-class researchers, and leaders in the public and private sectors. Black Hat Briefings and Trainings are held annually in the United States, Europe and Asia. More information is available at: blackhat.com. Black Hat is brought to you by Informa Tech.


We’d love to hear what you think. Ask a Question, Comment Below, and Stay Connected with Cisco Secure on social!

Cisco Secure Social Channels

Instagram
Facebook
Twitter
LinkedIn

❌